首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
等离子体喷涂氧化钛涂层的生物活性研究   总被引:1,自引:0,他引:1  
以纳米TiO2粉末为喷涂原料, 采用大气等离子体喷涂技术在医用钛合金上制备氧化钛涂层. 利用酸和碱溶液对氧化钛涂层表面进行生物活化处理, 体外模拟体液浸泡实验考察涂层的生物活性. 采用XRD、SEM、FTIR、EDS等测试技术对改性前后氧化钛涂层的生物活性进行表征. 结果表明: 氧化钛涂层和钛合金基体的结合强度较高, 其值高达40MPa, 涂层的耐模拟体液腐蚀性优于钛合金. 酸和碱溶液表面改性后的氧化钛涂层经模拟体液浸泡可在其表面生成含有碳酸根的羟基磷灰石(类骨磷灰石), 显示良好的生物活性.  相似文献   

2.
Hybrid coatings of poly(L-lysine) and apatite were formed on the micro-arc oxidized titania through a biomimetic process. Phosphorous (P)-containing titania films were prepared by micro-arc oxidation (MAO) of titanium (Ti) substrates in an electrolyte solution containing β-glycerol phosphate disodium salt pentahydrate. The hybrid coatings were grown by immersing MAO titania in the poly(L-lysine)-containing simulated body fluid (SBF) solution. After 72 h immersion, the globular precipitates appeared on the surface of titania films and grew up to ~ 10 µm. These precipitates consisted of 100–200 nm nano-flakes with a distorted (less straight) morphology. XRD and FT-IR confirmed that these precipitates were poly(L-lysine)-containing apatite nanocomposite.  相似文献   

3.
The objective of this work was to fabricate a suitable porous Ti–10Mo alloy as the human bone replacement implants. The porous Ti–10Mo alloy was fabricated by mechanical alloying and then consolidated by powder metallurgy technique. NH4HCO3 powder was used as space-holder. It was indicated that the mean pore size, porosity, compressive strength, and elastic modulus of porous Ti–10Mo alloy could be tailored by the amount of NH4HCO3, and then could be matched with those of human bones. Furthermore, porous Ti–10Mo alloy was treated by alkali heat treatment and soaked in the 1.5 times simulated body fluid (1.5SBF). It was observed that the surface and the inside pore wall of porous Ti–10Mo alloy with 25 wt.% NH4HCO3 covered with the apatite layer after soaked in 1.5SBF for 28 days. These phenomena indicated that the surface modified porous Ti–10Mo alloy exhibited a high potential for bone-bonding, which was expected to be used as bone tissue implant.  相似文献   

4.
Petal-like apatite/titania (TiO2) coating was prepared on commercially pure titanium (Ti) by micro-arc oxidation in electrolyte containing calcium and phosphate for the first time. The surface morphology, crystalline structure, chemical composition and binding state of the apatite/TiO2 composite coating were characterized. The coating consists of a double-layer (apatite layer and TiO2 layer) structure. The average thickness of the inner TiO2 layer and the outer apatite layer is about 6 μm and 16 μm respectively. The outer apatite layer is porous and exhibits petal-like pattern. The apatite layer consists of hydroxyapatite (HA) and carbonate-apatite and the inner TiO2 layer consists of anatase and rutile.  相似文献   

5.
To improve apatite forming ability of Ti–24Nb–4Zr–7.9Sn alloy, a porous oxidation layer has been synthesized by micro-arc oxidation in a calcium acetate electrolyte and subsequent heat treatment. These oxide layers were characterized by scanning electron microscopy, thin film X-ray diffraction and X-ray photoelectron spectroscopy. After the above treatments, the surface oxide consists of two layers: a thin, compact and uniform inner layer and a porous outer layer. Ca ions are incorporated into the oxide layer in the form of CaO while Ti, Nb and Sn participate in the oxidation to form TiO2, Nb2O5 and SnO2, respectively. After heat treatment at 600 °C, surfaces with such porous oxides have better apatite forming ability than the ground, smooth surface of the alloy, as evidenced by apatite formation within 7 days of soaking in a simulated body fluid. Preliminary in vitro cell test on rabbit's osteoblast show that these surfaces gain considerable improvement in cell proliferation.  相似文献   

6.
Well-ordered nanotube arrays of titania ~ 0.7 μm high and about 40 or 110 nm in diameter were prepared via electrochemical oxidation at constant voltage (10, 15, 20 or 25 V) in a mixture of 0.86 wt.% of NH4F, glycerol and deionized water. The effect of annealing the nanotubes at 600 °C on their morphology and structure was examined using SEM and TEM techniques. These substrates are suitable supports for a calcium phosphate coating deposited by a simple immersion in Hank solution.The nucleation and growth of a calcium phosphate (Ca–P) coating deposited on TiO2 nanotubes (NT) from Hanks' solution was investigated using SEM. XPS and FTIR surface analytical techniques were used to characterize the self-organized porous TiO2 layers covered with calcium phosphate coatings before and after protein adsorption. Our results confirm that the nanotubular titania layer became stable after annealing at 600 °C, while its internal structure changed from amorphous to crystalline anatase, and eventually, a mixture of anatase and rutile. These thermally stabilized TiO2 nanotubes significantly enhance apatite formation in Hanks' Balanced Salt Solution as compared to pure Ti covered with a native oxide layer. The Ca–P/TiO2 NT/Ti surface adsorbs a higher amount of protein (bovine serum albumin, BSA) for a geometric surface area than does the Ti surface. The above difference in protein adsorption suggests a more promising initial cellular response for a Ca–P/TiO2 NT/Ti composite than for a typical Ti implant surface.  相似文献   

7.
Bioactive Ti–6Al–4V alloy, which spontaneously forms a bonelike apatite layer on its surface in the body and bonds to living bone through this apatite layer, can be prepared by producing an amorphous sodium titanate on its surface by NaOH and heat treatments. In this study, the process of apatite formation on the bioactive Ti–6Al–4V alloy was investigated in vitro, by analyzing its surface with X-ray photoelectron spectroscopy as a function of soaking time in a simulated body fluid (SBF). Thin-film X-ray diffractometry of the alloy surface and atomic emission spectroscopy of the fluid were also performed complementarily. It was found that immediately after immersion in the SBF, the alloy exchanged Na+ ions from the surface sodium titanate with H3O+ ions in the fluid to form Ti-OH groups on its surface. The Ti-OH groups, immediately after their formation, incorporated the calcium ions in the fluid to form calcium titanate. The calcium titanate thereafter incorporated the phosphate ions in the fluid to form an amorphous calcium phosphate, which was later crystallized into bonelike apatite. This process of apatite formation on the alloy was the same as on the pure titanium metal, because the alloy formed the sodium titanate free of Al and V by the NaOH and heat treatments. The initial formation of the calcium titanate is proposed to be a consequence of the electrostatic interaction of negatively charged units of titania dissociated from the Ti-OH groups with the positively charged calcium ions in the fluid. The calcium titanate is postulated to gain a positive charge and interact with the negatively charged phosphate ions in the fluid to form amorphous calcium phosphate, which eventually stabilizes into crystalline apatite.  相似文献   

8.
生物活性钛涂层   总被引:9,自引:0,他引:9  
真空等离子喷涂的钛涂层经 5.0mol/L NaOH溶液处理后,将其浸泡在含 Ca2+、HPO2-的模拟生理体液(FCS和SBF)中,考察涂层诱导羟基磷灰石生长过程,并评价其生物活性.用SEM观察碱处理前后和在模拟生理体液中浸泡后钛涂层的形貌,用AES分析了碱处理前后钛涂层的表面成分;用XRD、FT-IR和EDS表征浸泡后涂层表面生长物的结构和成分;并测量了处理后钛涂层在浸泡过程中溶液中离子浓度和pH值的变化.结果表明,经处理的钛涂层在模拟生理体液中能诱导羟基磷灰石在其表面生长;在SBF和FCS分别形成碳酸羟基磷灰石层和含氧磷灰石的羟基磷灰石层.钛涂层的活性是由于碱处理后表面形成了网状和纤维状结构的Na-Ti-O化合物.这种化合物在模拟生理溶液中释放Na,吸收H;形成水化钛酸盐,诱导羟基磷灰石成核生长.  相似文献   

9.
This study focuses on rapid formation of calcium phosphate coating on a β type Ti–Nb–Zr–Sn biomedical titanium alloy by alkali treatment. The results show that a bioconductive surface layer forms on specimens immersed in 1–5 M KOH solution but only treatment in 1 M KOH avoids formation of crevices, producing a potassium titanate layer with porous network structure. Heat treatment at 600 °C after the alkali treatment promotes titanate growth. Following the above treatments, a continuous apatite layer forms within 4 h of soaking in a calcium phosphate solution with high ionic concentration. Such rapid apatite formation is due to high concentration of calcium ions in the solution used in this study and the buffering function of NaHCO3. Results of dissolution experiment show that Ca and P ions release gradually from the coating during soaking in a 0.9% NaCl solution, which may be helpful to the formation of natural bone if implanted in human body. Cell culture experiment shows that the apatite layer favours adhesion and proliferation of rat osteoblast as compared with coating-free Ti–Nb–Zr–Sn alloy and commercially pure titanium (CP Ti).  相似文献   

10.
The sub-micron glass–ceramic powders in CaO–MgO–SiO2 system with 10 wt% B2O3 additive were synthesized by sol–gel process. Then bioactive porous CaO–MgO–SiO2 glass–ceramic coatings on Ti–6Al–4V alloy substrates were fabricated using electrophoretic deposition (EPD) technique. After being calcined at 850°C, the above coatings with thickness of 10–150 μm were uniform and crack-free, possessing porous structure with sub-micron and micron size connected pores. Ethanol was employed as the most suitable solvent to prepare the suspension for EPD. The coating porous appearance and porosity distribution could be controlled by adjusting the suspension concentration, applied voltage and deposition time. The heat-treated coatings possessed high crystalline and was mainly composed of diopside, akermanite, merwinite, calcium silicate and calcium borate silicate. Bonelike apatite was formed on the coatings after 7 days of soaking in simulated body fluid (SBF). The bonding strength of the coatings was needed to be further improved.  相似文献   

11.
In implant technology, open porous Ti coatings are applied as functional surface layers on prosthetic devices to improve osseointegration. Since a successful clinical performance strongly depends on the (initial) quality of bone ingrowth in the porous structure, surface functionalization of the porous Ti to incorporate an additional osteoconductive capacity is recommended. In this paper, a bioactive glass–ceramic coating is applied into the open porous network of Ti coatings with a pore throat size of 1–20 μm through a sol–gel process. Using an all-alkoxide precursor route, homogeneous amorphous powders of three- (SiO2–CaO–P2O5) and four-component (SiO2–CaO–Na2O–P2O5) bioactive glass compositions are prepared. By sol impregnation followed by a heat treatment, it is possible to deposit a micrometer thin bioactive glass–ceramic layer on the walls of the internal pore surface, while the original porosity and the open pore structure of the Ti coatings are maintained. The tensile adhesion strength of the Ti/bioactive glass–ceramic composite coatings is 22 to 29 MPa, suggesting a good mechanical adhesion.  相似文献   

12.
Bioactive Ti—6Al—4V alloy, which spontaneously forms a bonelike apatite layer on its surface in the body and bonds to living bone through this apatite layer, can be prepared by producing an amorphous sodium titanate on its surface by NaOH and heat treatments. In this study, the process of apatite formation on the bioactive Ti—6Al—4V alloy was investigated in vitro, by analyzing its surface with X-ray photoelectron spectroscopy as a function of soaking time in a simulated body fluid 4SBF). Thin-film X-ray diffractometry of the alloy surface and atomic emission spectroscopy of the fluid were also performed complementarily. It was found that immediately after immersion in the SBF,the alloy exchanged Na1 ions from the surface sodium titanate with H3O1 ions in the fluid to form Ti-OH groups on its surface. The Ti-OH groups, immediately after their formation,incorporated the calcium ions in the fluid to form calcium titanate. The calcium titanate thereafter incorporated the phosphate ions in the fluid to form an amorphous calcium phosphate, which was later crystallized into bonelike apatite. This process of apatite formation on the alloy was the same as on the pure titanium metal, because the alloy formed the sodium titanate free of Al and V by the NaOH and heat treatments. The initial formation of the calcium titanate is proposed to be a consequence of the electrostatic interaction of negatively charged units of titania dissociated from the Ti-OH groups with the positively charged calcium ions in the fluid. The calcium titanate is postulated to gain a positive charge and interact with the negatively charged phosphate ions in the fluid to form amorphous calcium phosphate, which eventually stabilizes into crystalline apatite.  相似文献   

13.
A titania containing calcium and phosphate with rough and porous structure was prepared by microarc oxidation. The in vitro bioactivity was examined by immersing the samples into the simulated body fluid (SBF). And the mechanism was also discussed. The results show that only 3 days of immersion in SBF, apatite was formed on the surface, and after 6 days, nearly all the surface covered by apatite. This indicates that the layer can induce the formation of apatite in simulated body fluid. It is analyzed that the key factors of the apatite formation are the hydrolysis of the CaTiO3 and special structure.  相似文献   

14.
Magnesium-containing apatite coatings were prepared on Ti6Al4V substrates by sol-gel dip coating method. Standard simulated body fluid (SBF) was used to evaluate the bioactivity of the coatings. A series of the coatings according to the composition (Ca10−xMgx)(PO4)6(OH)2, where x = 0 to 2, is synthesized and immersed in the standard SBF for periods of 7 to 35 days for direct deposition of apatite layer from the SBF solution. Scanning electron microscopy (SEM) was used to examine the morphology changes of the SBF apatite layer that occurred during in vitro immersion. X-ray diffractometry, Fourier Transformation Infra-Red Spectroscopy and X-ray Photoelectron Spectroscopy were used to analyse the phases, chemical groups and composition of the sol-gel coating. Results show that as the sol-gel coating contains magnesium, this promotes deposition of apatite layer from SBF. As x ≤ 1, SBF immersion gives rise to a dense apatite layer. However, as ? 1, selected dissolution of the deposited layer takes place, which results in serious pitting on the surface. Also, Mg ions from the dissolution of the sol-gel coating during immersion in the SBF apparently played a role in the subsequent deposition of apatite o the coating, evidence of Mg was found in the apatite layer.  相似文献   

15.
A recently developed “GRAPE® technology” provides titanium or titanium alloy implants with spontaneous apatite-forming ability in vitro, which requires properly designed gaps and optimum heat treatment in air. In this study, titanium alloy and commercially pure (cp) titanium substrates were thermally oxidized in air before aligning pairs of specimens in the GRAPE® set-up, i.e., titanium alloy and cp titanium substrates were aligned parallel to each other with optimum gap width (spatial design). A liquid phase deposition (LPD) technique was employed for titania coatings on titanium alloy substrate. Then, they were soaked in Kokubo’s simulated body fluid (SBF, pH 7.4, 36.5 °C) for 7 days to confirm the in vitro apatite formation on the substrates under the specific spatial design. Anatase-type titania coatings fabricated by using LPD technique led to the deposition of apatite particles within 7 days and showed apatite X-ray diffraction. On the other hand, thermally oxidized titanium alloy substrate in air and non-treated specimens did not show any apatite X-ray diffraction. These results indicated that the heterogeneous nucleation of apatite induced on anatase-type titania coating prepared by LPD technique when it was aligned parallel to thermally oxidized cp titanium substrate with optimum gap width.  相似文献   

16.
Silicon coating was deposited on titanium alloy substrates by vacuum plasma spraying technology. The morphologies and phase composition of the coatings were analyzed by field-emission scanning electron microscopy and X-ray diffraction. The thermal expansion coefficient of silicon coating was measured to be about 3.70 × 10−6 K−1. The bond strength of coating was approximately 20.6 MPa. The density, open porosity, roughness and Young's modulus of silicon coating were also measured. The as-sprayed silicon coating was treated by deionized water at 60 °C, 80 °C and 100 °C for a period of time and soaked in simulated body fluids to evaluate its bioactivity. The results showed that the water-treated coating could induce apatite to precipitate on its surface in simulated body fluid, indicating that the bioactivity of silicon coating was improved. The increase of temperature and duration of water treatment had a positive effect on the bioactivity of silicon coatings.  相似文献   

17.
This work elucidated the corrosion resistance and in vitro bioactivity of electroplated manganese-doped hydroxyapatite (MnHAp) film on NaOH-treated titanium (Ti). The NaOH treatment process was performed on Ti surface to enhance the adhesion of the MnHAp coating on Ti. Scanning electron microscopy images showed that the MnHAp coating had needle-like apatite crystals, and the approximately 10 μm thick layer was denser than HAp. Energy-dispersive X-ray spectroscopy analysis revealed that the MnHAp crystals were Ca-deficient and the Mn/P molar ratio was 0.048. X-ray diffraction confirmed the presence of single-phase MnHAp, which was aligned vertically to the substrate. Fourier transform infrared spectroscopy indicated the presence of phosphate bands ranging from 500 to 650 and 900 to 1,100 cm?1, and a hydroxyl band at 3,571 cm?1, which was characteristic of HAp. Bond strength test revealed that adhesion for the MnHAp coating was more enhanced than that of the HAp coating. Potentiodynamic polarisation test showed that the MnHAp-coated surface exhibited superior corrosion resistance over the HAp single-coated surface. Bioactivity test conducted by immersing the coatings in simulated body fluid showed that MnHAp coating can rapidly induce bone-like apatite nucleation and growth. Osteoblast cellular tests revealed that the MnHAp coating was better at improving the in vitro biocompatibility of Ti than the HAp coating.  相似文献   

18.
Porous titanium (Ti) scaffolds with interconnected pores were fabricated by freezing titanium hydride (TiH2)/camphene slurries at 33 °C for 24 h, followed by freeze-drying and subsequent heat-treatment at 1300 °C for 2 h in vacuum. All of the fabricated samples revealed highly porous structures having large pores up to 100 μm in size surrounded by Ti metal walls without any secondary phases. When the initial TiH2 content was increased from 15 to 25 vol.%, the porosity was decreased from 63 to 49%, while the compressive strength was significantly improved from 81 to 253 MPa.  相似文献   

19.
Surface modifications by thermal and hydrothermal treatments in solution with calcium ions were investigated with the aim of improving bioactivity and wear resistance of a Ti–Nb–Zr–Sn alloy. The results showed that the first step of thermal treatment at 600 °C significantly increases the surface hardness and energy by forming oxides of Ti and Nb. The second step of hydrothermal treatment in a boiled supersaturated Ca(OH)2 solution induces a bioactive layer containing CaTiO3, CaCO3, Ca(OH)2 and TiO2. Using this treatment, a complete Ca–P layer can be formed within 3 days of soaking in simulated body fluid (SBF). The origin of such fast apatite formation was analyzed by comparison with single step thermal or hydrothermal treatment and with thermal plus hydrothermal treatment without calcium ions. The results suggest that the increase of surface energy by thermal treatment and the incorporation of calcium ions by the hydrothermal treatment in calcium ion solution play important roles in the formation of bioactive apatite.  相似文献   

20.
The physical, chemical and biological properties of the bioglass reinforced yttria-stabilized composite layer on Ti6Al4V titanium substrates were investigated. The Ti6Al4V substrate was deposited with yttria stabilized zirconia — YSZ as the base layer of thickness ≈ 4–5 μm, to inhibit metal ion leach out from the substrate and bioglass zirconia reinforced composite as the second layer of thickness ≈ 15 μm, which would react with surrounding bone tissue to enhance bone formation and implant fixation. The deposition of these two layers on the substrate was carried out using the most viable electrophoretic deposition (EPD) technique. Biocompatible yttria-stabilized zirconia (YSZ) in the form of nano-particles and sol gel derived bioglass in the form of micro-particles were chosen as precursors for coating. The coatings were vacuum sintered at 900 °C for 3 h. The biocompatibility and corrosion resistance property were studied in osteoblast cell culture and in simulated body fluid (SBF) respectively. Analysis showed that the zirconia reinforced bioglass bilayer system promoted significant bioactivity, and it exhibited a better corrosion resistance property and elevated mechanical strength under load bearing conditions in comparison with the monolayer YSZ coating on Ti6Al4V implant surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号