首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对铣床主轴运行产生的热误差问题,采用改进BP神经网络预测模型,并对预测结果进行验证。融合量子粒子群算法和差分进化算法的各自优点,给出混合算法寻优操作流程。分析BP神经网络结构,给出改进BP神经网络优化流程图,构造铣床热误差适应度函数,采用混合算法优化BP神经网络预测模型。通过具体实例对铣床热误差进行实验验证,预测结果显示:BP神经网络预测偏差值较大,在Y轴、Z轴方向预测产生的偏差最大值分别为7.3μm和7.5μm,改进BP神经网络预测偏差值较小,在Y轴、Z轴方向预测产生的偏差最大值分别为2.8μm和2.9μm。同时,改进BP神经网络预测铣床热误差与实际偏差值波动较小。采用改进BP神经网络预测铣床热误差精度较高,可以提高主轴加工工件的精度。  相似文献   

2.
为了降低机床热误差对主轴加工精度的影响,采用了混合粒子群算法优化BP神经网络结构,并对优化结果进行实验验证.引用了粒子群算法耦合遗传算法,给出BP神经网络结构简图,通过混合粒子群算法优化BP神经网络结构.构造机床热误差优化目标函数,采用混合粒子群算法优化目标函数,给出了混合粒子群算法优化BP神经网络流程图.建立BP神经网络热误差预测模型和BP神经网络热误差优化模型,采用三轴立式铣床对两种预测结果进行实验验证.实验结果表明:采用BP神经网络热误差预测模型,机床y轴、z轴预测结果与实验结果偏差最大值分别为6.9μm和6.7μm;采用BP神经网络热误差优化模型,机床y轴、z轴预测结果与实验结果偏差最大值分别为3.3μm和3.5μm.采用混合粒子群算法优化BP神经网络结构,能够提高机床热误差预测精度.  相似文献   

3.
为提高数控机床的精度,基于模拟退火算法设计数控机床热误差补偿方法,分别建立机床内部零件沿X轴、Y轴、Z轴方向做平移与旋转运动时的变化矩阵,计算电动机与轴承的发热量,二者相加后就可以得到高速运动下机床发热量。基于模拟退火算法建立热误差偏移补偿模型,获得系统温度的状态参量,得到温度下降后求和单元的传递函数,计算偏移补偿模型内X轴、Y轴、Z轴上经过多次迭代后的位置。设计数控机床热误差补偿算法,得到数控机床热误差补偿结果。实验结果显示,该数控机床在Y轴上的热误差值较小,但是在X轴与Y轴上的热误差较大,经过误差补偿后,其热误差分别降低至1~2 m m和0~1 m m,可见该热误差补偿方法效果较好。  相似文献   

4.
为了减少热误差对电主轴加工精度的影响,需要建立电主轴的热误差补偿系统,而补偿系统的性能主要取决于热误差预测模型的准确性和模型输入的温度质量。为保证输入模型的温度质量,采用模糊C-均值聚类和灰色关联分析相结合的综合算法优化温度测点,将温度测点的数量由10降至3个,以某台电主轴为试验对象,以电主轴转速为7 000 r/min的温度变量为输入,热误差变量为输出,采用自适应神经模糊推理系统建立了电主轴的热误差预测模型,并以转速为5 000和9 000 r/min的实验数据作为验证,结果表明,建立的ANFIS热误差预测模型可以有效地预测电主轴的热误差,预测模型的残差小于1μm。最后,与误差反向传播神经网络进行对比,结果表明该预测模型具有更高的精度和抗干扰能力。  相似文献   

5.
基于灰色理论预处理的神经网络机床热误差建模   总被引:7,自引:1,他引:7  
为最大限度减少热误差对数控机床加工精度的影响,尝试结合灰色理论和人工神经网络各自对数据处理的优点,提出一种基于灰色理论预处理的神经网络机床热误差补偿模型.在一台处于实际加工状态的数控车床上进行试验,采用数字式温度传感器测量经过优化选取的对热误差有关键影响的机床构件和加工环境的温度数据,采用非接触式位移传感器获得机床加工热误差数据,在不断调整灰色模型数据序列长度及神经网络权值、阈值的基础上,最终建立热误差补偿模型.通过与传统灰色模型和神经网络进行对比分析及试验论证表明,该补偿模型具有对原始温度和热误差数据要求低、计算简便、预测精度高、鲁棒性强等优点,可用于各种复杂实际加工场合中的数控机床热误差实时补偿.  相似文献   

6.
针对机床热误差补偿系统中温度传感器故障问题,采用神经网络方法建立各温度传感器间关系模型,提出基于模型的温度传感器故障诊断方法,通过所建立的数学模型来恢复故障传感器数据。笔者给出了相关温度传感器数据神经网络模型的建立方法以及故障传感器检测的策略。仿真实验对比表明:在无传感器故障情况下热误差补偿系统可将20μm内机床热误差控制在1.66μm范围内,而当有传感器故障情况下机床热误差可控制在1.69μm内,相差无几。研究工作表明笔者所提出的传感器失效检测和恢复方法是可行的。  相似文献   

7.
农机生产中热误差是影响数控机床加工精度的一个主要误差源,基于神经模糊系统设计了农用机械数控机床的热误差补偿模型。首先,建立一个小型数控机床来获得模型的训练数据集与测试数据集;然后,采用灰色数学理论获得各温度传感器对机械热变形的效果排名,并使用模糊c-means聚类方法将热变形效果值进行分组;最终,采用神经模糊系统设计最终的热误差补偿模型。机械实验结果表明,热误差补偿模型的预测精度较高,并具备较好的鲁棒性。  相似文献   

8.
考虑五轴机床中的旋转轴误差会影响加工精度和在机测量结果,本文研究了旋转轴误差的在机测量与建模方法。介绍了基于标准球和机床在机测量系统的旋转轴综合误差测量方法,采用随机Hammersely序列分组规划旋转轴的测量角位置,通过自由安放策略确定标准球初始安装位置。然后,引入模糊减法聚类和模糊C-均值聚类(Fuzzy C-means,FCM)建立旋转轴误差的径向基(Radial basis function,RBF)神经网络预测模型。最后,进行数学透明解析,从而为误差的精确解析建模提供新途径。利用曲面的在机测量实例验证了提出的旋转轴误差测量与建模方法。结果表明:利用所建模型计算的预测位置与实测位置的距离偏差平均值为9.6μm,最大值不超过15μm;利用所建模型补偿工件的在机测量结果后,其平均值由32.5μm减小到13.6μm,最大误差也由62.3μm减小到18.6μm。结果显示,提出的测量方法操作简单,自动化程度高;模糊RBF神经网络的学习速度快、适应能力强、鲁棒性好,能满足高度非线性、强耦合的旋转轴误差建模要求。  相似文献   

9.
基于热误差模型进行机床热误差补偿是保证数控机床加工精度的一种有效方法,温度测点的布置和辨识会直接影响热误差建模的精确性和鲁棒性。本文提出一种互信息和改进模糊聚类法相结合的机床热关键点优化方法。以机床不同位置处的多个测点温度值及工件热变形作为分析数据,通过计算温度变量与热变形之间的平均互信息量,获得其综合关联度矩阵,确定二者之间的相关性后初选温度变量。根据改进模糊聚类法、F统计量和复判定系数对初选的温测点进行聚类,并结合温度变量与热变形之间的综合关联度值提取机床热关键点,从而实现测点优化。将基于该方法所得到的热误差模型与采用变量分组优化法获得的热误差模型进行比较,结果显示采用该方法进行热误差建模,机床X轴和Y轴的热变形预测精度得到显著提高,有利于改善加工精度。  相似文献   

10.
李艳  李英浩  高峰  孟振华 《仪器仪表学报》2015,36(11):2466-2472
基于热误差模型进行机床热误差补偿是保证数控机床加工精度的一种有效方法,温度测点的布置和辨识会直接影响热误差建模的精确性和鲁棒性。本文提出一种互信息和改进模糊聚类法相结合的机床热关键点优化方法。以机床不同位置处的多个测点温度值及工件热变形作为分析数据,通过计算温度变量与热变形之间的平均互信息量,获得其综合关联度矩阵,确定二者之间的相关性后初选温度变量。根据改进模糊聚类法、F统计量和复判定系数对初选的温测点进行聚类,并结合温度变量与热变形之间的综合关联度值提取机床热关键点,从而实现测点优化。将基于该方法所得到的热误差模型与采用变量分组优化法获得的热误差模型进行比较,结果显示采用该方法进行热误差建模,机床X轴和Y轴的热变形预测精度得到显著提高,有利于改善加工精度。  相似文献   

11.
数控机床进给轴综合误差解耦建模与补偿研究   总被引:1,自引:0,他引:1  
为建立高精度的数控机床综合误差补偿模型,提出一种针对机床定位误差的解耦分离建模方法。通过对数控机床温度场与定位误差进行测量,研究机床在不同工况下温度场与定位误差的变化规律,基于该规律定义机床定位误差敏感度的概念,采用灰色关联度算法建立定位误差敏感度矩阵并优化了测温点。根据机床定位误差变化规律,利用多元回归和GM(1,n)算法对机床几何基准误差和热误差进行解耦分离建模,并将上述模型进行线性叠加构建机床定位误差综合模型。在不同工况条件下对一台VXC-560型加工中心进行在线补偿,试验结果表明机床x轴在冷态条件下的定位误差从11.1μm降低到4.5μm,降幅为59.5%,在热态条件下的最大定位误差由34.9μm降低到8.2μm,降幅为76.5%,并验证了采用误差模型直接驱动机床硬件进行补偿的新思路,具有一定的工程应用前景。  相似文献   

12.
基于牛顿插值的批量轴类零件加工误差补偿   总被引:1,自引:0,他引:1  
为提高批量轴类零件加工精度及加工效率,通过分析批量轴类零件加工数据,得到加工误差分布规律;运用牛顿插值理论建立批量轴类零件加工误差数学模型:应用用户宏程序按工件序号及切削位置进行误差实时补偿.该误差补偿方法综合考虑切削力引起的误差、热误差、刀具磨损误差、机床几何误差、编程误差、检测调整误差等误差因素,全面分析各误差因素与误差分布规律的关系,避免了误差因素分析不全的影响.得出切削力是影响单件工件加工误差分布的主要因素,刀具磨损是影响批量轴类零件加工误差分布的主要因素,热误差是导致误差分布规律畸变的主要因素.实践表明,应用该误差补偿方法可使批量轴类零件最大加工误差由60μm降低到4μm,补偿了93.3%;减少在机检测调整时间,加工效率提高13%,有效提高批量轴类零件加工精度和加工效率.  相似文献   

13.
于宝成  王春梅 《机械制造》2005,43(10):63-65
详细分析了超精密机床加工中,激光测量系统误差组成及其产生机理,给出了有效的修正和补偿手段.影响激光测量系统精度和重复精度的主要误差因素可分为3类:内部误差、环境误差和安装误差.通过实例分析精密机床四轴激光测量系统,设计出了四轴激光测量光路,实现超精密工作台的X、Y、Rz三自由度位置反馈,给出了影响测量精度的误差因素以及对系统精度的影响大小.  相似文献   

14.
提出了一种基于克里金插值的机床空间误差测量与补偿方法。机床加工精度一般受切削力、热变形和空间误差的影响,为采集机床空间误差样本,提出了一种基于克里金插值的测量方法,利用激光跟踪仪测量给定点的空间误差,通过克里金插值计算给定点之间的空间误差,并进行了机床空间误差测量实验。结果表明,克里金插值的计算精度明显高于线性插值,有效提高了空间误差测量精度。为实施空间误差补偿,通过对机床误差模型进行分步解耦,开发了空间误差补偿器,并进行了机床空间误差补偿实验。结果表明,机床主轴在X轴方向的变形量为025μm,实施空间误差补偿后,某工件平面加工后的最大轮廓误差由15μm减小到了5μm。该补偿方法为提高数控机床的加工精度提供了一种有效途径。  相似文献   

15.
针对机床热误差补偿技术中温度测点优化选择的问题,提出采用基于灰色关联分析和模糊聚类分析相结合的方法对机床温度测点进行优化选择。采用灰色关联分析法计算温度变量与主轴热误差之间的相关系数,并据此优选温度变量,采用模糊聚类分析法对所选择的温度变量进行聚类,确定关键温度变量,结合关键温度变量建立热误差线性回归模型。在精密卧式加工中心MCH63上对该方法进行了试验验证,结果表明,温度测点的数量由29个减少到6个,机床轴向热误差由41.3μm减小到7.6μm。  相似文献   

16.
张恩忠  赵继  冀世军  李刚 《光学精密工程》2015,23(12):3422-3429
为了提高四轴抛光平台的加工精度,本文针对以气浮平台和旋转台为主要运动方式的四轴抛光平台进行了几何与热综合误差建模与补偿研究。采用激光干涉仪、温度传感器等测量仪器分别对平台X、Z轴在不同温度下的定位误差进行重复测量与分析,证实了不同进给速度对定位误差没有显著影响。得到了四轴抛光平台X、Z轴的定位误差与温度之间的变化规律。基于正交多项式和插值算法分别建立了X、Z轴的几何与热综合误差模型。根据综合误差模型计算出预测数据曲线,并分别对X、Z轴的7组实验数据进行了数据拟合,拟合残差绝对值均不超过0.2μm。依据预测数据进行了补偿实验。结果显示,补偿后四轴抛光平台在常温下、温升(60 min)下和稳态下的Z轴定位误差分别降低了93.05%、92.45%、85.71%,X轴定位误差分别降低了89.28%、93.59%、93.33%。实验结果证明本文所提出的综合模型及补偿方法精度高,鲁棒性好。  相似文献   

17.
运用RBF神经网络理论建立机床主轴热误差数学模型,首次采用API主轴测量系统对150MD24Y16型电主轴进行了热变形实时测量.实验结果表明,所测主轴热变形沿Z轴方向最大,在主轴转速1 000 r/min的条件下,约为43 μm,并依据国际标准对主轴进行了24 h测量,为后期有限元分析和实时补偿提供了实测数据和经验保障.  相似文献   

18.
为避免机床热变形对加工精度的影响,针对高速机械主轴发热量大、传动链中热量不均衡等特点,提出了一种基于SINUMERIK数控系统的主轴热变形实时补偿方法。以某卧式加工中心作为研究对象,利用主轴热变形分析仪进行机床主轴热变形检测,采集检验棒在X、Y、Z这3个方向的实时变化并生成曲线。在主轴系统中布局5个温度传感器实时采集主轴内部温度,采用线性回归方法建立机械主轴的热误差模型,结合SINUMERIK数控系统提供的同步功能及温度补偿功能,实现对刀尖位置的实时补偿,保障了机床的加工精度。  相似文献   

19.
热点产品     
《机电工程技术》2004,33(9):3-4
六轴数控精密微细电火花机床上海SARIX公司推出SX-200-HPM六轴(X/Y/Z/C/A/B)数控精密电火花机床,X/Y/Z行程350/200/200mm,X/Y轴定位精度±1μm,分辨率±0.1μm,工作台上装有电极修正装置,采用线电极等方式进行修正,通过X,Y,Z,C等相关轴的联动,进行各种形状电极的反拷贝加工。Z/C/A/B可加工Φ≤0.02mm的微孔,例如可进行硬质合金集成电路模具的穿丝孔加工等。该机还可以进行电火花铣削加工。亚洲最大冷热板矫直机试车成功8月4日,由沈阳重型机械集团有限责任公司为宝钢制造的世界最先进的5米宽厚板冷、热矫直机一次试车成功,并通过…  相似文献   

20.
数控机床热变形误差研究及补偿应用   总被引:1,自引:0,他引:1  
热变形误差是影响机床加工精度的重要因素之一,通过误差补偿的方法可以提高机床的加工精度。研究了通过实时补偿热变形误差提高数控机床加工精度的方法,阐述了热误差的基本原理,介绍了热误差的测量方法。采用模糊聚类的方法来布置测温点,利用多元线形回归方法建立了机床热变形与温升之间的数学模型。在PLC补偿系统的作用下,在加工过程中对XH718数控机床进行实时补偿。实验结果表明补偿效果很好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号