首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The loading of multi-walled carbon nanotubes (MWNTs) and glucose oxidase (GOx) in the alternate layers of a glucose biosensor was first optimized based on a layer-by-layer construction on the surface of a graphite disk electrode. With the increasing of MWNTs/GOx layers, the response current to glucose was changed regularly and the response current reached a maximum value when the number of MWNTs/GOx layers was 6. Owing to a good electrical conductivity, strong adsorption and excellent bioconsistency of MWNTs, the (MWNTs/GOx)6 films-coated glucose biosensor had an excellent electrochemical properties. The response current of the (MWNTs/GOx)6 films-coated biosensor to 3 × 10 2 M glucose was 1.63 μA while the response time was only 6.7 s. The linear range and the lowest detectable concentration of this biosensor was 5 × 10 4∼1.5 × 10 2 M and 0.9 × 10 4 M, respectively.  相似文献   

2.
The control of size and shape of metallic nanoparticles is a fundamental goal in nanochemistry, and crucial for applications exploiting nanoscale properties of materials. We present here an approach to the synthesis of gold nanoparticles mediated by glucose oxidase (GOD) immobilized on solid substrates using the Layer-by-Layer (LbL) technique. The LbL films contained four alternated layers of chitosan and poly(styrene sulfonate) (PSS), with GOD in the uppermost bilayer adsorbed on a fifth chitosan layer: (chitosan/PSS)4/(chitosan/GOD). The films were inserted into a solution containing gold salt and glucose, at various pHs. Optimum conditions were achieved at pH 9, producing gold nanoparticles of ca. 30 nm according to transmission electron microscopy. A comparative study with the enzyme in solution demonstrated that the synthesis of gold nanoparticles is more efficient using immobilized GOD.  相似文献   

3.
4.
Carbon nanofiber-based glucose biosensor   总被引:1,自引:0,他引:1  
The use of highly activated carbon nanofibers for the design of catalytic electrochemical biosensors is demonstrated. The direct immobilization of enzymes onto the surface of carbon nanofibers is shown to be a highly efficient method for the development of a new class of very sensitive, stable, and reproducible electrochemical biosensors. These results establish the fact that the carbon nanofiber is the best matrix so far described for the development of biosensors, far superior to carbon nanotubes or graphite powder.  相似文献   

5.
The electrostatic layer-by-layer (LbL) assembly of acid-modified multi-walled carbon nanotubes (MWNTs) and biopolymer chitosan (CHIT) is realized on planar substrates and polystyrene (PS) microsphere templates, respectively. The successful stepwise growing process of the composite films on planar substrates is investigated and confirmed by scanning electron microscopy and UV-vis spectroscopy. The transfer of the LbL assembly of MWNTs and CHIT to spherical PS microspheres leads to novel (MWNT/CHIT)PS core-shell structure, on which the gold nanoparticles (GNPs) are deposited to fabricate GNP(MWNT/CHIT)PS composite microspheres. The glass carbon electrodes modified with such (MWNT/CHIT)PS or GNP(MWNT/CHIT)PS composites exhibit satisfactory electrocatalytic activities for biomolecule dopamine.  相似文献   

6.
A new, extremely efficient method for the fabrication of films comprised of gold nanoparticles (GNPs) crosslinked by organic dithiols is presented in this paper. The method is based on layer-by-layer spin-coating of both components, GNPs and crosslinker, and enables the deposition of films several tens of nanometers in thickness within a few minutes. X-ray diffraction and conductance measurements reveal the proper adjustment concentration of the crosslinker solution of the critical is in order to prevent the destabilization and coalescence of particles. UV/vis spectroscopy, atomic force microscopy, and conductivity measurements indicate that films prepared via layer-by-layer spin-coating are of comparable quality to coatings prepared via laborious layer-by-layer self-assembly using immersion baths. Because spin-coated films are not bound chemically to the substrate, they can be lifted-off by alkaline underetching and transferred onto 3d-electrodes to produce electrically addressable, freely suspended films. Comparative measurements of the sheet resistances indicate that the transfer process does not compromise the film quality.  相似文献   

7.
A novel fabrication method for optical thin film filters based on the self-organization of alternating layers of colloidal gold and silica nanoparticles (NP) is reported. The filter is designed to work in the deep-UV to visible spectral range. The spectral absorption peaks are tuned by three parameters: the organic capping ligand of the gold NPs (citrate, chitosan, poly (diallyl-dimethylammonium)-chloride or PDDA); the capping environment (bare, chitosan, or PDDA) of the silica NPs and the thickness of the film. Precise control of the transmission color (less than 1% color distance per layer), is achieved by changing the film thickness. Exploitation of the self-assembly process should lead to the facile production of highly reliable large area thin film optical filters at considerably lower costs.  相似文献   

8.
This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44-1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N = 3) with a relative standard deviation (RSD) of 5.4% (n = 7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 μg/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday.  相似文献   

9.
A novel amperometric glucose biosensor based on multilayer films containing chitosan, multi-wall carbon nanotubes (MWCNTs) and glucose oxidase (GOD) was developed. MWCNTs were solubilized in chitosan (Chit-MWCNTs) used to interact with GOD. Poly (allylamine) (PAA) and polyvinylsulfuric acid potassium salt (PVS) were alternately deposited on the cleaned Pt electrode surface ((PVS/PAA)3/Pt). The (PVS/PAA)3/Pt electrode was alternately immersed in Chit-MWCNTs and GOD to assemble different layers of multilayer films. PBS washing was applied at the end of each assembly deposition for dissociating the weak adsorption. Micrographs of MWCNTs were obtained by scanning electron microscope, and properties of the resulting biosensors were measured by electrochemical measurements. Among the resulting biosensors, the biosensor based on eight layers of multilayer films was best. The resulting biosensor was able to efficiently monitor glucose, with the response time within 8 s, a detection limit of 21 μM estimated at a signal-to-noise ratio of 3, a linear range of 1–10 mM, the sensitivity of 0.45 μA/mM, and well stability. The study can provide a feasible simple approach on developing a new immobilization matrix for biosensors and surface functionalization.  相似文献   

10.
11.
Laser ablation has been used ex situ to create metal nanoparticles for introduction into a reactive pyrolysis flame. By prior synthesis of the metal nanoparticles, the effects of the reactive gases can be clearly separated from the pyrolysis chemistry of a solvent carrier, as when nebulized solutions are used. Moreover, varying reactivity issues associated with particle growth and size are bypassed. Our results show that Fe selectively reacts with CO to produce nanotubes, whereas Ni selectively reacts with C2H2 to produce nanofibers. These observations are interpreted through the donation and withdrawal of electron density between the adsorbate's molecular orbitals and surface atoms of the metal nanoparticle. The rate of reaction of Ni with only C2H2 is found to be greater than the rate with C2H2 and CO. This suggests that CO inhibits the Ni-catalyzed reaction.  相似文献   

12.
Composite films containing gold nanoparticles embedded in diamond-like carbon (Au–DLC) matrix were deposited on glass and Si (1 0 0) substrates by using capacitatively coupled plasma (CCP) chemical vapour deposition technique (CVD). Particle size and metal volume fraction varied between 2.7–3.5 nm and 0.04–0.7, respectively with the amount of argon in the methane + argon gas mixture in the plasma. Bonding environment in these films were obtained from XPS, Raman and FTIR studies. Microstructural studies were carried out by SEM, XRD and TEM studies. Blue-shift of the surface plasmon resonance peak (located 540–561 nm) in the optical absorbance spectra of the films could be associated with the reduction of the particle size while red shift was associated with the increase in volume fraction of metal particles. The experimental results have been discussed in light of the core–shell model.  相似文献   

13.
The ellipsometric measurement of local surface plasmon resonance (LSPR) caused by the adsorption of chitosan on layer-by-layer gold nanoparticles (Au NPs) was investigated. Six nanometer (6 nm) Au NPs were prepared and layer-by-layer Au NPs were fabricated to shift the LSPR to 520, 540, and 560 nm, respectively, due to the Mie theory. The thicknesses and the fractions of the layer-by-layer Au NPs were measured accurately using a combination of the Fresnel equation and the Maxwell-Garnett equations for ellipsometry. Furthermore, the position of the LSPR was shifted by chitosan. Using trajectory to record the trace of polarized light for ellipsometry resulting from LSPR, it was found that LSPR is predominantly induced when the LSPR position is close to the wavelength of the ellipsometric measurement. The trajectory circle of LSPR is very large for an increase of chitosan adsorption on Au NPs when the LSPR position is close to the detected wavelength. The linear approximation aspect quantifying the trajectory corresponds with the change of LSPR for the adsorption of chitosan, except for cases with low incidence and Brewster angles. The aspects and technologies of ellipsometry will benefit from the findings in this study, with potential applications in the fields of determination of molecular adsorption.  相似文献   

14.
A layer-by-layer deposition technique was employed for fabricating choline biosensors using chloline oxidase (ChOx) and polycations such as poly(ethyleneimine) (PEI) and poly(diallyldimethylammonium chloride) (PDDA). A platinum electrode was coated with ChOx/PEI or ChOx/PDDA thin film to prepare amperometric choline sensors. The amperometric response of the sensors depended significantly on the type of the polycations. The ChOx/PDDA film suppressed the permeation of choline, resulting in a lower response than that of the ChOx/PEI film-based sensors. The results were rationalized based on the different chemical structures of the polycationic materials.  相似文献   

15.
The formation of polycation chitosan, CS, with polyanion lignosulfonate, LGS, multilayer films based on layer-by-layer self-assembly method was investigated by several techniques. UV absorption spectra showed that the growth of both CS and LGS layers followed the exponential model. The film surface wettability was found alternated depending on the surface properties of these two materials because the contact angle is smaller for the CS layer and greater for the LGS layer while the surface free energy is known greater for the former and smaller for the latter. AFM images indicated that the surface roughness of these layers was in nanosize and was increased with the layer number due to the aggregation. The field emission scanning electron microscope photograph showed that the average thickness of each layer was about 5–6 nm.  相似文献   

16.
Microbial Fuel Cells (MFCs) are robust devices capable of taping biological energy, converting pollutants into electricity through renewable biomass. The fabrication of nanostructured electrodes with good bio- and electrochemical activity, play a profound role in promoting power generation of MFCs. Au nanoparticles (AuNPs)-modified Boron-Doped Diamond (BDD) electrodes are fabricated by layer-by-layer (LBL) self-assembly technique and used for the direct electrochemistry of Shewanella loihica PV-4 in an electrochemical cell. Experimental results show that the peak current densities generated on the Au/PAH multilayer-modified BDD electrodes increased from 1.25 to 2.93 microA/cm(-2) as the layer increased from 0 to 6. Different cell morphologies of S. loihica PV-4 were also observed on the electrodes and the highest density of cells was attached on the (Au/PAH)6/BDD electrode with well-formed three-dimensional nanostructure. The electrochemistry of S. loihica PV-4 was enhanced on the (Au/PAH)4/BDD electrode due to the appropriate amount of AuNPsand thickness of PAH layer.  相似文献   

17.
纳米碳管/聚合物功能复合材料   总被引:20,自引:17,他引:20  
纳米碳管(Carbonnanotubes,CNT)具有π π共轭电子结构,可与结构相似的聚合物(Polymer)通过范德华力结合形成复合材料。导电聚合物(Electricallyconductingpolymer,ECP)包覆多壁纳米碳管(Multi walledcarbonnanotubes,MWNT)后,可用于诸如超级电容器等电子器件。共轭发光聚合物修饰纳米碳管形成的CNT polymer复合材料,具有很强的发光性能,有望用于电子接收器和光电器件。通过连结氨基聚合物,可使多壁纳米碳管溶解和功能化,从而将纳米碳管引入生物学系统中。研究结果表明,CNT polymer复合物有许多潜在的应用,有待进一步发展。  相似文献   

18.
Polystyrene (PS) and multi-walled carbon nanotube (MWNT) nanocomposites were synthesized via an in situ bulk polymerization by employing an ultrasonicator without adding an initiator, in which the ultrasonication was found to do a favor in producing well-dispersed MWNT in the PS matrix. Morphology of the as-synthesized PS/MWNT nanocomposite was investigated by both scanning electron microscopy and transmission electron microscopy. Electrical conductivity of the PS/MWNT nanocomposite film fabricated by a solvent casting method was also examined to be enhanced with MWNT content, while average molecular weights of the synthesized PS in the PS/MWNT nanocomposites analyzed by a gel permeation chromatography increased and then saturated at 2 wt% MWNT. Rheological properties of MWNT containing PS were enhanced because of improved dispersion of the MWNT through an interaction between MWNT and PS.  相似文献   

19.
The aim of this study was to show the feasibility and the performances of nanoparticle biosensing. A glucose conductometric biosensor was developed using two types of nanoparticles (gold and magnetic), glucose oxidase (GOD) being adsorbed on PAH (poly(allylamine hydrochloride)) modified nanoparticles, deposited on a planar interdigitated electrode (IDEs). The best sensitivities for glucose detection were obtained with magnetic nanoparticles (70 μM/mM and 3 μM of detection limit) compared to 45 μM/mM and 9 μM with gold nanoparticles and 30 μM/mM and 50 μM with GOD directly cross-linked on IDEs. When stored in phosphate buffer (20 mM, pH 7.3) at 4 °C, the biosensor showed good stability for more than 12 days.  相似文献   

20.
An easy calibration method based on the Langmuir adsorption theory is proposed for a carbon nanotube field-effect transistor (NTFET) biosensor. This method was applied to three NTFET biosensors that had approximately the same structure but exhibited different characteristics. After calibration, their experimentally determined characteristics exhibited a good agreement with the calibration curve. The reason why the observed characteristics of these NTFET biosensors differed among the devices was that the carbon nanotube (CNT) that formed the channel was not uniform. Although the controlled growth of a CNT is difficult, it is shown that an NTFET biosensor can be easy calibrated using the proposed calibration method, regardless of the CNT channel structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号