首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
颜英杰 《工业催化》2018,26(9):70-72
介绍3种类型骨架镍催化剂在己二腈加氢中的应用,并对加氢结果进行比较。结果表明,3种类型骨架镍催化剂均可以实现己二腈加氢,己二腈转化率和己二胺选择性较高。同时对其他二腈如2-甲基戊二腈和丁二腈进行加氢研究,进一步表明骨架镍在腈类加氢中具有独特优势。  相似文献   

2.
Alkyl substituted thiophenes are promising candidates for hydrogen carriers, as their dehydrogenation reactions are known to occur under mild conditions. Four types of catalysts, including supported noble metals, bimetallic noble metals, transition metal phosphides and transition metal sulfides, have been investigated for 2-methylthiophene (2MT) hydrogenation and ring-opening. The major products were tetrahydro-2-methylthiophene (TH2MT), pentenes and pentane, with very little C5-thiols observed. The selectivity towards the desired product TH2MT follows the order: noble metals > bimetallics > phosphides > sulfides. The best hydrogenation catalyst was 2% Pt/Al2O3 which exhibited relatively high reactivity and selectivity towards TH2MT at moderate temperatures. Temperature-programmed reaction (TPR) experiments revealed that pentanethiol became the major product, especially with HDS catalysts like CoMoS/Al2O3 and WP/SiO2.  相似文献   

3.
A hydrogenation index (HI), measured in the hydrodesulfurization (HDS) of dibenzothiophene (DBT), is used to estimate the intrinsic hydrogenation selectivities of MoS2, Co0.1MoS2, and two supported HDS catalysts. The HI and catalyst activity for desulfurizing 4,6-diethyl-DBT follow the same trend: MoS2 ? Co0.1MoS2 ? supported catalysts. For desulfurizing a petroleum fraction rich in 4,6-alkyl-DBTs and 4-alkyl-DBTs, the activity decreases as follows: Co0.1MoS2 > supported catalysts ? MoS2. These results introduce an apparent conundrum: MoS2 has such a high hydrogenation power and activity for desulfurizing 4,6-diethyl-DBT, why does it perform poorly in real-feed tests? This conundrum is resolved by showing that an ultra-deep HDS catalyst requires an optimum balance between an intrinsic factor (hydrogenation function) and an environmental factor (tolerance of organonitrogen). Incorporating Co into MoS2 lowers the hydrogenation function of MoS2 and hence improves tolerance of organonitrogen. This conclusion corroborates the prediction of an early modeling study.  相似文献   

4.
Deactivation and regeneration of supported skeletal Ni catalyst applied to hydrogenation of indene and styrene in fixed-bed reactor were investigated. The significant aggregation of skeletal Ni and formation of coke precursors were the main reasons for deactivation of catalyst. Furthermore, TG-DTA, XRD, SEM, BET and H2-TPR were utilized to characterize the regenerated catalysts and calcining the spent catalysts in air at 550 °C for 3 h and then reducing in H2 at 450 °C for 3 h under 240 h 1 (GHSV) could recover its activity according to hydrogenation evaluation results.  相似文献   

5.
This study investigated the use of pyridinium-based ionic liquids (ILs) as an efficient catalyst for the rapid solvent-free microwave-assisted cycloaddition of allyl glycidyl ether (AGE) and CO2 to yield allyl glycidyl carbonate (AGC) under moderate reaction conditions. The cycloaddition reaction occurred over a short reaction time of 30 s, resulting in a high turnover frequency (TOF) ranging from 200 to 7000 h 1. The effects of alkyl chain length and anion of pyridinium-based catalysts on the cycloaddition reactivity were studied. The effects of reaction parameters such as the amount of catalyst, microwave power, CO2 pressure, and reaction time were also investigated.  相似文献   

6.
《Catalysis communications》2011,13(15):1410-1414
Competitive hydrogenations of eight binary mixtures of ethyl pyruvate (EP), methyl benzoylformate (MBF), ketopantolactone (KPL), pyruvic aldehyde dimethyl acetal (PA) and trifluoroacetophenone (TFAP) on platinum/alumina catalysts unmodified (racemic hydrogenation) and modified by cinchonidine (chiral hydrogenation) were studied under the experimental conditions of the Orito reaction. Reaction rates of chiral and racemic hydrogenations were determined and relative adsorption coefficients were calculated. In the competitive chiral hydrogenation of EP + MBF, EP + TFAP and KPL + MBF binary mixtures a new phenomenon was observed: namely the EP and KPL are hydrogenated faster than MBF and TFAP, whereas in racemic one the MBF and TFAP are hydrogenated faster than EP or KPL. Effects of the activated ketones structure on their reactivity and the stability of the surface complexes are discussed. It was found that differences in rate enhancement are caused by the differences both in the adsorptivity and in the reactivity of adsorbed substrates and adsorbed intermediate complexes.  相似文献   

7.
Carbon modified KxCo0.75MoP (0  x  1.5) catalysts were prepared from a sol–gel method using citric acid as a complexant. The catalysts were evaluated with CO hydrogenation and characterized by XRD, XPS and CO2-TPD techniques. Results show that the addition of cobalt accelerates the dispersion of catalytic components in phosphide catalysts while the participation of potassium in phosphide catalysts enhances the interaction between MoP and CoMoP and facilitates the rearrangement of electron density in different Mo species. In K1Co0.75MoP, a large number of Mo4 + species resulted in high selectivity to C2 + higher alcohol.  相似文献   

8.
The Mg–O–F system (MgF2–MgO) with different contents of MgF2 (100–0%) and MgO is tested as support of iridium catalysts in the hydrogenation of toluene as a function of the MgF2/MgO ratio. Mg–O–F samples have been prepared by the reaction of magnesium carbonate with hydrofluoric acid. The MgF2–MgO supports, after calcination at 500 °C, are classified as mesoporous of surface area (34–135 m2·g 1) depending on the amount of MgO introduced. The Ir/Mg–O–F catalysts have been tested in the hydrogenation of toluene. The highest activity, expressed as TOF, min 1, was obtained for the catalyst supported on Mg–O–F containing 75 mol%MgF2.  相似文献   

9.
A series of palladium supported on activated carbon catalysts, with Pd varying from 0.5 to 6.0 wt%, were prepared via wet impregnation method using PdCl2 · xH2O as a precursor salt. The dried samples were further reduced at 573 K in hydrogen and characterized by CO adsorption at room temperature in order to determine the dispersion, metal area and particle size. The catalysts were tested for vapour phase phenol hydrogenation in a fixed-bed all glass micro-reactor at a reaction temperature of 453 K under normal atmospheric pressure. The decrease in metal surface area as well as dispersion with corresponding increase in turn-over frequency (TOF) against palladium loadings suggest the unusual inverse relationship that exist between Pd dispersion and phenol hydrogenation activity over Pd/carbon catalysts. The stability of TOF at larger crystallite size indicates that phenol hydrogenation is less sensitive reaction especially beyond 3 wt% of Pd content. It is evident from the results that structural properties of the catalysts strongly influence the availability of Pd atoms on the surface for CO chemisorption and hence for phenol hydrogenation. A comparison between selectivity and product yield of the reaction against overall phenol conversion indicates that changes in reaction selectivity for cyclohexanone or cyclohexanol is independent of phenol conversion level and either of the product is not formed at the cost of another. The stability of the catalysts with reaction time suggests that coke formation on the surface of the catalyst is less significant and the formation of cyclohexanone remains almost total even at higher reaction temperatures.  相似文献   

10.
We have established for the first time 100% selectivity in the continuous gas phase hydrogenation of p-chloronitrobenzene (p-CNB) to p-chloroaniline for reaction over a series of oxide and carbon supported Ni catalysts (6 ± 2%, w/w) under mild reaction conditions (T = 393 K, P = 1 atm). Catalyst activation by temperature programmed reduction (TPR) is addressed, BET area and H2 uptake measurements provided and mean metal particle sizes evaluated by transmission electron micrographic (TEM) analysis. The following activity sequence has been determined: Ni/Al2O3 > Ni/SiO2 > Ni/Activated Carbon > Ni/graphite. Pd/Al2O3, as an alternative catalyst, delivered an appreciably higher activity but with the production of nitrobenzene (principal product) and aniline (secondary product), i.e. hydrodechlorination with subsequent –NO2 reduction prevailed. Exclusive formation of the corresponding haloaniline is also demonstrated for the hydrogenation of o-chloronitrobenzene, m-chloronitrobenzene and p-bromonitrobenzene over Ni/Al2O3. A lower hydrogenation rate is established for p-CNB relative to nitrobenzene, consistent with a halogen substituent deactivation effect. While the Ni catalysts suffered a loss of activity with time-on-stream, exclusive selectivity to the haloamine product was maintained. These preliminary results can serve as a basis for the development of a cleaner, high throughput production of commercially important haloamines.  相似文献   

11.
This paper is aimed at studying the influence of the support nature and morphology on the performance of ruthenium catalysts for partial hydrogenation of benzene in liquid phase. Therefore, Al2O3 and Nb2O5 supports were employed with different values of particle diameter and superficial specific area. The catalysts were prepared through incipient impregnation from an aqueous solution of the RuCl3·xH2O precursor. After impregnation, the solids underwent a reduction treatment under H2 flow at the temperature of 573 K. The solids were characterized through the techniques of particle size distribution, XRD, BET, SEM + EDX and TPR. The catalytic performances were evaluated within the hydrogenation of benzene in liquid phase, conducted at 373 K under constant pressure of 5.0 MPa of H2. For the conditions employed, the results show that the support nature practically exerts no influence upon the selectivity of the intermediate product to the benzene  cyclohexene  cyclohexane reaction. However, the increase in the particle diameter or in the superficial specific area of the support decreases the yield of cyclohexene.  相似文献   

12.
The nanocrystalline TiO2 materials with average crystallite sizes of 9 and 15 nm were synthesized by the solvothermal method and employed as the supports for preparation of bimetallic Au/Pd/TiO2 catalysts. The average size of Au–Pd alloy particles increased slightly from sub-nano (< 1 nm) to 2–3 nm with increasing TiO2 crystallite size from 9 to 15 nm. The catalyst performances were evaluated in the liquid-phase selective hydrogenation of 1-heptyne under mild reaction conditions (H2 1 bar, 30 °C). The exertion of electronic modification of Pd by Au–Pd alloy formation depended on the TiO2 crystallite size in which it was more pronounced for Au/Pd on the larger TiO2 (15 nm) than on the smaller one (9 nm), resulting in higher hydrogenation activity and lower selectivity to 1-heptene on the former catalyst.  相似文献   

13.
Co/CuZnO is known as a base metal catalyst active for C2+ oxygenate synthesis. This study probed the interactions of the different components of Co/CuZnO catalysts on CO hydrogenation using Fischer–Tropsch synthesis (250 °C, H2/CO = 2) and SSITKA. Only combination of all three metal components produced a catalyst with relatively high C2+ oxygenate selectivity, but with much lower activity compared to that for Co/Al2O3. In situ reaction characterizations, albeit at somewhat different conditions than alcohol synthesis, helped explain interaction of the components. SSITKA, under methanation conditions, indicated that the most striking feature for the combination of Co with ZnO and/or Cu was a much decreased amount of reaction intermediates. Ethane hydrogenolysis results suggested that the different components for these catalysts were in close contact and few or no large ensembles (n ? 12) of Co atoms existed, confirming that ZnO and/or Cu covered/blocked a substantial number of active sites on Co for CO hydrogenation.  相似文献   

14.
Three nickel catalysts supported on carbon and nitrogen-doped carbon nanospheres have been prepared by deposition-precipitation (DP) with urea (ca. 2% w/w). The nanospheres were prepared by thermal pyrolysis of benzene (CNSB), aniline (CNSA) and nitrobenzene (CNSN) and characterized by transmission electron microscopy (TEM), N2 adsorption–desorption, temperature-programmed oxidation (TPO), X-ray diffraction (XRD), elemental (CHN) analysis, X-ray photoelectron spectroscopy (XPS), temperature-programmed decomposition (TPD) and acid/base titrations, revealing different graphitic characteristics and different distribution of nitrogen (when present) functionalities. Upon Ni introduction, the catalysts were characterized by temperature-programmed reduction (TPR), XRD and TEM. Surface area weighted mean Ni particle diameters (post activation at 603 K) were in the range 10.5–18.2 nm. Ni particle size exhibited a big dependence on CNS nitrogen doping, where nitrogen introduction, essentially in the quaternary form, enhanced metal sintering by enriching the surface electron density of the support. The catalysts were tested in the gas phase hydrogenation of butyronitrile (T = 493 K). Extracted specific reaction rates in the steady state followed the sequence: Ni/CNSB < Ni/CNSA < Ni/CNSN. When the active metal was physically mixed with the support, the following sequence was obtained: Ni + CNSB < Ni + CNSA < Ni + CNSN. Our results demonstrate that doping carbon nanospheres with nitrogen strongly impacts on reactant adsorption and metal sintering, both critical aspects in the hydrogenation of nitriles. Selectivity was not sensitive to the support (or the physical mixture) employed and was in all cases close to 100% to the primary amine.  相似文献   

15.
The separation of aromatic hydrocarbons (benzene, toluene, ethyl benzene and xylenes) from C4 to C10 aliphatic hydrocarbon mixtures is challenging since these hydrocarbons have boiling points in a close range and several combinations form azeotropes. In this work, we investigated the separation of toluene from heptane by extraction with ionic liquids.Several ionic liquids are suitable for extraction of toluene from toluene/heptane mixtures. The toluene/heptane selectivities at 40 °C and 75 °C with several ionic liquids, [mebupy]BF4, [mebupy]CH3SO4, [bmim]BF4 (40 °C) and [emim] tosylate (75 °C), are a factor of 1.5–2.5 higher compared to those obtained with sulfolane (Stol/hept = 30.9, Dtol = 0.31 at 40 °C), which is the most industrially used solvent for the extraction of aromatic hydrocarbons from a mixed aromatic/aliphatic hydrocarbon stream. From these five ionic liquids, [mebupy]BF4 appeared to be the most suitable, because of a combination of a high toluene distribution coefficient (Dtol = 0.44) and a high toluene/heptane selectivity (Stol/hept = 53.6). Therefore, with [mebupy]BF4 also extraction experiments with other aromatic/aliphatic combinations (benzene/n-hexane, ethylbenzene/n-octane and m-xylene/n-octane) were carried out. The aromatic/aliphatic selectivities were all in the same range, from which it can be concluded that the toluene/heptane mixture is a representative model system for the aromatic/aliphatic separation.  相似文献   

16.
This paper reports the results of a study into the effect of mixed γ and crystalline phases in Al2O3 on the characteristics and catalytic activities for CO hydrogenation of Co/Al2O3 catalysts. The catalysts were characterized by X-ray diffraction, N2 physisorption, transmission electron microscopy, and H2 chemisorption. Increasing Co loading from 5 to 20 wt% for the mixed phase Al2O3-supported Co catalysts resulted in a constant increase in both the number of cobalt metal active sites and the hydrogenation activities. However, for those supported on γ-Al2O3, Co dispersion increased up to 15 wt%Co and declined at 20 wt%Co loading. It is suggested that the spherical-shape like morphology of the χ-phase Al2O3 prevented agglomeration of Co particles, especially at high Co loadings.  相似文献   

17.
Unsupported NiMo sulfide catalysts were prepared from ammonium tetrathiomolybdate (ATTM) and nickel nitrate by using a hydrothermal synthesis method involving water, organic solvent and hydrogen. The activity of these catalysts in the simultaneous hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was much higher than that of the commercial NiMo/Al2O3 sulfide catalysts. Interestingly, the unsupported NiMo sulfide catalysts showed higher activity for hydrogenation (HYD) pathway than the direct desulfurization (DDS) pathway in the HDS of DBT. The same trends were observed for the HDS of 4,6-DMDBT. Morphology, surface area, pore volume and the HDS activity of unsupported NiMo sulfide catalyst depended on the catalyst preparation conditions. Higher temperature and higher H2 pressure and addition of an organic solvent were found to increase the HDS activity of unsupported NiMo sulfide catalysts for both DBT and 4,6-DMDBT HDS. Higher preparation temperature increased HYD selectivity but decreased DDS selectivity. High-resolution TEM images revealed that unsupported NiMo sulfide prepared at 375 °C shows lower number of layers in the stacks of catalyst with more curvature and shorter length of slabs compared to that prepared at 300 °C. On the other hand, higher preparation pressure increased DDS selectivity but decreased HYD selectivity for HDS of 4,6-DMDBT. HRTEM images showed higher number of layers in the stack for the NiMo sulfide prepared under an initial H2 pressure of 3.4 MPa compared to that under 2.1 MPa. The optimal Ni/(Mo + Ni) ratio for the NiMo sulfide catalyst was 0.5, higher than that for the conventional Al2O3-supported NiMo sulfide catalysts. This was attributed to the high dispersion of the active species and more active NiMoS generated. The present study also provides new insight for controlling the catalyst selectivity as well as activity by tailoring the hydrothermal preparation conditions.  相似文献   

18.
Pd/Al2O3 and Pd/SiO2 catalysts containing Pd nanoparticles in the size range of 3–13 nm were prepared and investigated in direct selective hydrogenation of phenol to cyclohexanone. Catalysts with 3 nm Pd nanoparticles present highly active and promoted the selective formation of cyclohexanone under atmospheric pressure of hydrogen in aqueous media without additives. Conversion of 99% and a selectivity higher than 99% were achieved within 3 h at 333 K. The generality of Pd/Al2O3 catalyst with 3 nm Pd nanoparticles for this reaction was demonstrated by selective hydrogenation of other hydroxylated aromatic compounds with similar performance.  相似文献   

19.
The separation of aromatic hydrocarbons (benzene, toluene, ethyl benzene and xylenes) from C4 to C10 aliphatic hydrocarbon mixtures is challenging since these hydrocarbons have boiling points in a close range and several combinations form azeotropes. In this work, we investigated the separation of toluene from heptane by extraction with ionic liquids.Several ionic liquids are suitable for extraction of toluene from toluene/heptane mixtures. The toluene/heptane selectivities at 40 °C and 75 °C with several ionic liquids, [mebupy]BF4, [mebupy]CH3SO4, [bmim]BF4 (40 °C) and [emim] tosylate (75 °C), are a factor of 1.5–2.5 higher compared to those obtained with sulfolane (Stol/hept = 30.9, Dtol = 0.31 at 40 °C), which is the most industrially used solvent for the extraction of aromatic hydrocarbons from a mixed aromatic/aliphatic hydrocarbon stream. From these five ionic liquids, [mebupy]BF4 appeared to be the most suitable, because of a combination of a high toluene distribution coefficient (Dtol = 0.44) and a high toluene/heptane selectivity (Stol/hept = 53.6). Therefore, with [mebupy]BF4 also extraction experiments with other aromatic/aliphatic combinations (benzene/n-hexane, ethylbenzene/n-octane and m-xylene/n-octane) were carried out. The aromatic/aliphatic selectivities were all in the same range, from which it can be concluded that the toluene/heptane mixture is a representative model system for the aromatic/aliphatic separation.  相似文献   

20.
The effect of active carbon pretreatment on the catalytic performance of Pd/C catalysts in the hydrogenation of itaconic acid was studied. The catalysts were prepared by deposition–precipitation and characterized by XRD, BET, NH3-TPD, TEM and FT-IR. Due to the modification of the surface functional groups, surface structure and surface acidities of active carbon via pretreatment, the Pd/C catalysts showed varied catalytic performances. High dispersion and uniform particles were conducive to the excellent activity of Pd/C catalyst with support copretreated with HNO3 and NaClO, which exhibited 89.5% selectivity towards methyl-γ-butyrolactone at 180 °C, 4 MPa H2 for 20 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号