首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of power sources》2007,165(2):911-915
A novel alkyloxy-imidazole polymer was prepared by in situ co-polymerization of alkyloxy-imidazole and diiodide to develop an ionic polymer gel electrolyte for quasi-solid dye-sensitized solar cells (DSCs). The DSCs with the polymer gel electrolyte of 1-methyl-3-propylimidazolium iodide (MPII) showed good photovoltaic performance including the short-circuit photocurrent density (Jsc) of 3.6 mA cm−2, the open-circuit voltage (Voc) of 714.8 mV, the fill factor (FF) of 0.60 and the light-to-electricity conversion efficiency (η) of 1.56% under AM 1.5 (100 mW cm−2). As a comparison, the DSCs with the polymer gel electrolyte of 1,2-dimethyl-3-propylimidazolium iodide (DMPII) yielded a light-to-electricity conversion efficiency of 1.33%. The results indicated that the as-prepared polymers were suitable for the solidification of liquid electrolytes in DSCs.  相似文献   

2.
We report on the development of fully flexible microcrystalline and micromorph tandem solar cells directly on low-cost substrates like poly-ethylen-terephtalate (PET) and poly-ethylen-naphtalate (PEN). The cells are deposited in nip or nip/nip configuration on the plastic substrate coated with a highly reflecting Ag–ZnO back contact. Light trapping is achieved by combining a periodically textured substrate and a diffusing ZnO front contact. Single-junction microcrystalline cells with a stable efficiency of 8.7% are achieved with an i-layer thickness of 1.2 μm. In tandem devices we obtain an efficiency of 10.9% (initial) with an open circuit voltage of 1.35 V and a fill factor (FF) of 71.5%. These cells are slightly top limited with 11.26 and 11.46 mA/cm2 in the amorphous (270 nm thick) and the microcrystalline (1.2 μm thick) sub-cells, respectively. We introduce an intermediate reflector (IR) between the bottom and the top cell because it allows increasing the top cell current without compromising the stability by a thicker absorber. The IRs consist of either an ex-situ ZnO or a low refractive index P-doped silicon–oxygen compound deposited in-situ with a plasma process that is fully compatible with solar cell processing. We demonstrate significant current improvement (up to 8% relative) using both kinds of IRs.  相似文献   

3.
Natural convection in an air filled enclosure with a localized nonuniform heat source mounted centrally on the bottom wall is numerically investigated. The vertical walls are cooled while the top wall and the remaining portions of the bottom wall are insulated. The heat source is assumed to be isothermal with a linearly varying temperature. The governing equations were solved using finite volume method on a uniformly staggered grid system. The computational results are presented in the form of isotherm and streamline plots and Nusselt numbers. The effects of the source nonuniformity parameter, λ and the line source length, ε are investigated for the Grashof numbers Gr = 106 and 107. It is found that for Gr = 106 nonuniform heating of the line source enhances the overall heat transfer rate markedly compared to uniform heating of the heat source whereas for Gr = 107 its effect is marginal.  相似文献   

4.
The effect of the top and bottom wall temperatures on the natural convection heat transfer characteristics in an air-filled square cavity driven by a difference in the vertical wall temperatures was investigated by measuring the temperature distributions along the heated vertical wall and visualizing the flow patterns in the cavity. The experiments were performed at a horizontal Grashof number of 1.9 × 108. Increasing the top wall temperature resulted in a separated flow region on the top wall, which caused a secondary flow between the separated flow and the boundary layer on the heated vertical wall. This secondary flow had a significant effect on the heat transfer in this region. Changes in the top and bottom wall temperatures changed the temperature gradient and the average temperature of the air outside the thermal boundary layers in the cavity. The local heat transfer along much of the heated vertical wall could be correlated by Nu = C · Ra0.32, but the constant C increased when the average of the top and bottom wall temperatures increased.  相似文献   

5.
The characteristics of transient double-diffusive convection in a vertical cylinder are numerically simulated using a finite element method. Initially the fluid in the cavity is at uniform temperature and solute concentration, then constant temperature and solute concentration, which are lower than their initial values, are imposed along the sidewall and bottom wall, respectively. The time evolution of the double-diffusive convection is investigated for specific parameters, which are the Prandtl number, Pr = 7, the Lewis number, Le = 5, the thermal Grashof number, GrT = 107, and the aspect ratio, A = 2, of the enclosure. The objective of the work is to identify the effect of the buoyancy ratio (the ratio of solutal Grashof to thermal Grashof numbers: N = GrS/GrT) on the evolution of the flow field, temperature and solute field in the cavity. It is found that initially the fluid near the bottom wall is squeezed by the cold flow from the sidewall, a crest of the solute field forms and then pushed to the symmetry line. In the case of N > 0, a domain with higher temperature and weak flow (dead region) forms on the bottom wall near the symmetry line, and the area of dead region increases when N varies from 0.5 to 1.5. More crests of the solute field are formed and the flow near the bottom wall fluctuates continuously for N < 0. The frequency of the fluctuation increases when N varies from −0.5 to −1.5. Corresponding to the variety of the thermal and solutal boundary layers, the average rates of heat transfer (Nu) at the sidewall remain almost unchanged while the average rates of mass transfer (Sh) at the bottom wall change much in the cases of N = 1, 0, −1.  相似文献   

6.
Mixed convection heat transfer from arrays of discrete heat sources inside a horizontal channel has been investigated experimentally. Each of the lower and upper surfaces of the channel was equipped with 8 × 4 flush mounted heat sources subjected to uniform heat flux. Sidewalls, lower and upper walls are insulated and adiabatic. The experimental parametric study was made for aspect ratios of AR = 2, 4 and 10, at various Reynolds and Grashof numbers. From the experimental measurements, row-average surface temperature and Nusselt number distributions of the discrete heat sources were obtained and effects of Reynolds and Grashof numbers on these numbers were investigated. From these results, the buoyancy affected secondary flow and the onset of instability have been discussed. Results show that top and bottom heater surface temperatures increase with increasing Grashof number. The top heater average-surface temperatures for AR = 2 are greater than those of bottom ones. For high values of Grashof numbers where natural convection is the dominant heat transfer regime (Gr1/Re2  1), temperatures of top heaters can have much greater values. The variation of the row-average Nusselt numbers for the aspect ratio of AR = 4, show that with the increase in the buoyancy affected secondary flow and the onset of instability, values of Nusselt number level off and even rise as a result of heat transfer enhancement especially for low Reynolds numbers.  相似文献   

7.
The mixed convective transport of Cu-H2O nanofluid in a differentially heated and lid-driven square enclosure in the presence of a rotating circular cylinder is investigated numerically. The top wall of the enclosure is sliding from left to right at a uniform speed while all other walls are stationary. A thermally insulated circular cylinder is placed centrally within the enclosure. The cylinder can rotate about its centroidal axis. The top and bottom walls are kept isothermal at different temperatures while the side walls are assumed adiabatic. Simulations are performed for, Richardson number 1  Ri  10, dimensionless rotational speed 0  Ω  5 and nanoparticle concentration 0  ϕ  0.20 keeping the Grashof number fixed as Gr = 104. The flow and thermal fields are analyzed through streamline and isotherm plots for various Ω and Ri. Furthermore, the drag coefficient of the moving lid and Nusselt number of the hot wall are also computed to understand the effects of Ω and Ri on them. It is observed that the heat transfer greatly depends on the rotational speed of the cylinder, mixed convective strength and the nanoparticle concentration.  相似文献   

8.
Mixed convection heat transfer in a top and bottom heated rectangular channel with discrete heat sources has been investigated experimentally for air. The lower and upper surfaces of the channel were equipped with 8 × 4 flush-mounted heat sources subjected to uniform heat flux. Sidewalls, the lower and upper walls were insulated and adiabatic. The experimental study was made for an aspect ratio of AR = 6, Reynolds numbers 955  ReDh  2220 and modified Grashof numbers Gr* = 1.7 × 107 to 6.7 × 107. From experimental measurements, surface temperature and Nusselt number distributions of the discrete heat sources were obtained for different Grashof numbers. Furthermore, Nusselt number distributions were calculated for different Reynolds numbers. Results show that surface temperatures increase with increasing Grashof number. The row-averaged Nusselt numbers first decrease with the row number and then, due to the increase in the buoyancy affected secondary flow and the onset of instability, they show an increase towards the exit as a result of heat transfer enhancement.  相似文献   

9.
《Journal of power sources》2006,161(2):1161-1168
The transient behavior of a proton exchange membrane fuel cell (PEMFC) with porosity is investigated in this study using a two-phase, half-cell model. The thin film agglomerate approach is used to model the catalyst layer. Both vapor transport and liquid water transport in the PEMFC are examined in this study. Proton transport is much faster than the gaseous and liquid water transport. The ionic potential reaches a steady state level in ∼10−1 s but liquid water transport takes ∼10 s. The variation of the ionic potential loss reaches a critical value, decreasing to a steady state, and is not monotonic. The gas diffusion layer (GDL) and the catalyst layer (CL) porosity, which can affect cell performance, have been carefully investigated. The current density rises rapidly within 10−2 s, then remaining constant. After 1 s, this is affected by the cell voltage, GDL porosity, and CL porosity, and if the GDL porosity is below 0.4, the current density drops. For the gas diffusion layer porosity, the current density increases between ɛGDL = 0.2 and ɛGDL = 0.5, with increased GDL porosity. For the catalyst layer porosity, the optimum value appears between ɛCL = 0.06 and ɛCL = 0.1.  相似文献   

10.
A numerical investigation of the steady magnetohydrodynamics free convection in a rectangular cavity filled with a fluid-saturated porous medium and with internal heat generation has been performed. A uniform magnetic field, inclined at an angle γ with respect to the horizontal plane, is externally imposed. The values of the governing parameters are the inclined angle γ = 0, π/6, π/4 and π/2, Hartmann number Ha = 0, 1, 5, 10 and 50, Rayleigh number Ra = 10, 100, 103 and 105, and the aspect ratio a = 0.01, 0.2, 0.5 and 1 (square cavity). It is shown that the intensity of the core convection is considerably affected by the considered parameters. It is also found that the local Nusselt number NuY decreases on the bottom wall as γ increases (magnetic field changes its direction from the horizontal to the vertical direction) and vice versa for the top wall of the cavity. The reported results are in good agreement with the available published work in the literature.  相似文献   

11.
《Journal of power sources》2001,92(1-2):228-233
Polyamides (DTA-I, DTA-II, and DTA-III) containing cyclic disulfide structure were prepared by condensation between 1,2-dithiane-3,6-dicarboxylic acid (DTA) and alkyl diamine, NH2–(CH2)n–NH2 (DTA-I; n=4, DTA-II; n=6, DTA-III; n=8) and their application to positive active material for lithium secondary batteries was investigated. Cyclic voltammetry (CV) measurements under slow sweep rate (0.5 mV s−1) with a carbon paste electrode containing the polyamide (DTA-I, DTA-II, or DTA-III) were performed. The results indicated that the polyamides were electroactive in the organic electrolyte solution (propylene carbonate (PC)-1,2-dimethoxyethane (DME), 1:1 by volume containing lithium salt, such as LiClO4). The responses based on the redox of the disulfide bonds in the polyamide were observed.Test cells, Li/PC-DME (1:1. by volume) with 1 mol dm−3 LiClO4/the polyamide cathode, were constructed and their performance was tested under constant current charge/discharge condition. The average capacity of the test cells with the DTA-III cathode was 64.3 Ah kg−1 of cathode (135 Wh kg−1 of cathode, capacity (Ah kg−1) of the cathode×average cell voltage (2.10 V)). Performance of the cell with linear polyamide containing disulfide bond (–CO–(CH2)2–S–S–(CH2)2–CONH–(CH2)8–NH–, GTA-III) was also investigated and the average capacity was 56.8 Ah kg−1 of cathode (100 Wh kg−1 of cathode, capacity (Ah kg−1) of the cathode×average cell voltage (1.76 V)). Cycle efficiency of the test cell with the DTA-III cathode was higher than that with the GTA-III cathode.  相似文献   

12.
Natural convection in trapezoidal cavities, especially those with two internal baffles in conjunction with an insulated floor, inclined top surface, and isothermal left-heated and isothermal right-cooled vertical walls, has been investigated numerically using the Element based Finite Volume Method (EbFVM). In numerical simulations, the effect of three inclination angles of the upper surface as well as the effect of the Rayleigh number (Ra), the Prandtl number (Pr), and the baffle’s height (Hb) on the stream functions, temperature profiles, and local and average Nusselt numbers has been investigated. A parametric study was performed for a wide range of Ra numbers (103 ? Ra ? 106) Hb heights (Hb = H1/3, 2H1/3, and H1), Pr numbers (Pr = 0.7, 10 and 130), and top angle (θ) ranges from 10 to 20. A correlation for the average Nusselt number in terms of Pr and Ra numbers, and the inclination of the upper surface of the cavity is proposed for each baffle height investigated.  相似文献   

13.
《Biomass & bioenergy》2007,31(8):593-598
This work is focused on the influence of dilution rate (0.08⩽D⩽0.32 d−1) on the kinetics of continuous cultivation of Spirulina platensis at two different concentrations of ammonium chloride (N0=1.0 and 10 mM) as nitrogen source. Cell productivity increased in both series of runs up to D≅0.12–0.16 d−1, and then decreased. While at N0=1.0 mM biomass washing was certainly the cause of progressive cell concentration decrease, a combination of this phenomenon with the toxic effect of excess ammonia was responsible, at N0=10 mM and D⩾0.20 d−1, for quick stop of cell growth just beyond the achievement of maximum cell productivity (92.4 mg l−1 d−1). Similar profile was observed for protein productivity, that achieved a maximum value of 67.0 mg l−1 d−1, because of the very high protein content (72.5%) of biomass produced under these conditions. The yield of nitrogen-to-biomass was much higher at the lower N0, because of the low protein content, and reached a maximum value of 9.7 g g−1 at D=0.08–0.12 d−1. The yield of nitrogen-to-protein showed less marked difference, being most of the nitrogen present in the cell as proteins or free amino-acids.  相似文献   

14.
This work uses an optimization procedure consisting of a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to investigate the optimal geometric parameters of a double-layered microchannel heat sink (DL-MCHS). The overall thermal resistance RT is the objective function to be minimized, and the number of channels N, channel width ratio β, lower channel aspect ratio αl, and upper channel aspect ratio αu are the search variables. For a given bottom area (10 × 10 mm) and heat flux (100 W/cm2), the optimal (minimum) thermal resistance of the double-layered microchannel heat sink is about RT = 0.12 °C/m2W. The corresponding optimal geometric parameters are N = 73, β = 0.50, αl = 3.52, and, αu = 7.21 under a total pumping power of 0.1 W. These parameters reduce the overall thermal resistance by 52.8% compared to that yielded by an initial guess (N = 112, β = 0.37, αl = 10.32, and αu = 10.93). Furthermore, the optimal thermal resistance decreases rapidly with the pumping power and then tends to approach an constant value. As the pumping power increases, the optimal values of N, αl, and αu increase, whereas the optimal β value decreases. However, increasing the pumping power further is not always cost-effective for practical heat sink designs.  相似文献   

15.
Finite element method is used in this study to analyze the effects of buoyancy ratio and Lewis number on heat and mass transfer in a triangular cavity with zig-zag shaped bottom wall. Buoyancy ratio is defined as the ratio of Grashof number of solutal and thermal. Inclined walls of the cavity have lower temperature and concentration according to zig-zag shaped bottom wall. Enclosed space consists mostly of an absorber plate and two inclined glass covers that form a cavity. Both high temperature and high concentrations are applied to bottom corrugated wall. Computations were done for different values of buoyancy ratio (?10 ? Br ? 10), Lewis number (0.1 ? Le ? 20) and thermal Rayleigh number (104 ? RaT ? 106). Streamlines, isotherms, iso-concentration, average Nusselt and Sherwood numbers are obtained. It is found that average Nusselt and Sherwood numbers increase by 89.18% and 101.91% respectively as Br increases from ?10 to 20 at RaT = 106. Also, average Nusselt decreases by 16.22% and Sherwood numbers increases by 144.84% as Le increases from 0.1 to 20 at this Rayleigh number.  相似文献   

16.
《Journal of power sources》2006,155(2):456-460
La1.3  xSmxCaMg0.7Ni9 (x = 0–0.3) hydrogen storage alloys were prepared by inductive melting and the effect of the Sm content on the structure and electrochemical properties was investigated in the paper. The Sm substitution for La in La1.3  xSmxCaMg0.7Ni9 (x = 0–0.3) alloys does not change the main phase structure (the rhombohedral PuNi3-type structure), but leads to a shrinkage of unit cell and a decrease of hydrogen storage capacity. With the increase of the Sm content in the alloys, the maximum discharge capacity of electrode decreases from 400.2 (x = 0) to 346.6 mAh g−1 (x = 0.3), but the high-rate dischargeability and cycling stability is improved. After 100 cycles, the capacity retention rate increases from 75 (x = 0) to 85% (x = 0.3).  相似文献   

17.
In-situ ultra-thin porous poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF–HFP) membranes were prepared by a phase inversion method on TiO2 electrodes coated with Ru N-719 dye. These membranes were then soaked in the organic liquid electrolyte to form the in-situ ultra-thin porous P(VDF–HFP) membrane electrolytes. Dye-sensitized solar cell (DSC) using the membrane electrolyte exhibited an open-circuit voltage (Voc) of 0.751 V, a short-circuit current (Jsc) of 16.260 mA cm?2 and a fill factor (FF) of 0.684 under an incident light intensity of 1000 W m?2 yielding an energy conversion efficiency (η) of 8.35%. The Voc, FF and η of the solar cell using the membrane electrolyte increased by about 5.8%, 2.2% and 5.7%, respectively, when compared with the corresponding values of a cell using liquid electrolyte. However, the Jsc decreased by about 2.1%.  相似文献   

18.
《Journal of power sources》2006,154(1):290-297
The crystal structure, hydrogen storage property and electrochemical characteristics of the La0.7Mg0.3Ni3.5  x(Al0.5Mo0.5)x (x = 0–0.8) alloys have been investigated systematically. It can be found that with X-ray powder diffraction and Rietveld analysis the alloys are of multiphase alloy and consisted of impurity LaNi phase and two main crystallographic phases, namely the La(La, Mg)2Ni9 phase and the LaNi5 phase, and the lattice parameter and the cell volume of both the La(La, Mg)2Ni9 phase and the LaNi5 phase increases with increasing Al and Mo content in the alloys. The PC isotherms curves indicate that the hydrogen storage capacity of the alloy first increases and then decreases with increasing x, and the equilibrium pressure decreases with increasing x. The electrochemical measurements show that the maximum discharge capacity first increases from 354.2 (x = 0) to 397.6 mAh g−1 (x = 0.6) and then decreases to 370.4 mAh g−1 (x = 0.8). The high-rate dischargeability of the alloy electrode increases lineally from 55.7% (x = 0) to 73.8% (x = 0.8) at the discharge current density of 1200 mA g−1. Moreover, the exchange current density of the alloy electrodes also increases monotonously with increasing x. The hydrogen diffusion coefficient in the alloy bulk increases with increasing Al and Mo content and thus enhances the low-temperature dischargeability of the alloy electrode.  相似文献   

19.
A steady buoyancy-driven flow of air in a partially open square 2D cavity with internal heat source, adiabatic bottom and top walls, and vertical walls maintained at different constant temperatures is investigated numerically in this work. A heat source with 1% of the cavity volume is present in the center of the bottom wall. The cold right wall contains a partial opening occupying 25%, 50% or 75% of the wall. The influence of the temperature gradient between the verticals walls was analyzed for Rae = 103–105, while the influence of the heat source was evaluated through the relation R = Rai/Rae, investigated at between 400 and 2000. Interesting results were obtained. For a low Rayleigh number, it is found that the isotherm plots are smooth and follow a parabolic shape indicating the dominance of the heat source. But as the Rae increases, the flow slowly becomes dominated by the temperature difference between the walls. It is also observed that multiple strong secondary circulations are formed for fluids with a small Rae whereas these features are absent at higher Rae. The comprehensive analysis is concluded with horizontal air velocity and temperature plots for the opening. The numerical results show a significant influence of the opening on the heat transfer in the cavity.  相似文献   

20.
The paper presents the geometric optimization of the micro-heat sink with straight circular microchannels with inner diameter of Di = 900 μm. The inlet cross-section has a rectangular shape and positioned tangentially to the tube axis with the four different geometries. The fluid flow regime is laminar and water with variable fluid properties is used as a working fluid. The heat flux spread through the bottom sink surface is q = 100 W/cm2. Thermal and hydrodynamic performances of the heat sink are compared with results obtained for conventional channel configuration with lateral inlet/outlet cross-section. Besides, the results are compared with the tangential micro-heat sink with Di = 300 μm. For all the cases, the thermal and hydrodynamic results are compared on a fixed pumping power basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号