首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
在球-盘接触状态下,研究具有不同宽度的沟槽型织构表面对界面摩擦学特性的影响,并揭示沟槽型织构表面对界面摩擦学行为的作用机制。试验结果表明:沟槽型织构表面显著地改变界面的摩擦学行为,特定尺寸参数的沟槽型织构表面能有效改善界面的摩擦磨损特性;沟槽的存在改变摩擦界面的接触状态,从而引起界面的法向位移和法向力信号产生突变;具有合理尺寸参数的沟槽型织构表面,能充分捕获界面的磨屑,避免对摩试样之间产生强烈的撞击作用,从而有效地改善界面摩擦学行为。  相似文献   

2.
齿轮表面织构化研究现状与进展   总被引:2,自引:0,他引:2  
苏永生  李亮  方明  黄胜洲 《润滑与密封》2019,44(12):125-129
高速重载时齿轮摩擦界面的高温强应力场,是导致齿轮传动机构工作效率、运动精度及使用寿命降低的主要原因。应用表面织构可以改变齿轮副摩擦界面的摩擦学特性,为齿轮减摩降磨技术提供了一条新途径。介绍现有齿轮副齿面抗摩擦和磨损的主要方法,从理论上分析应用表面织构化齿轮减摩的可行性;分别综述表面织构技术在齿轮润滑和提高界面摩擦学特性方面的研究现状与进展,同时分析齿轮表面织构减摩机制、表面织构特征参数研究及表面织构设计方法方面存在的问题,提出后续应重点针对极端工况下的齿轮织构作用机制、特征参数与润滑效果关系及多变量齿轮织构设计方法开展研究,并展望齿轮表面织构技术对齿面减摩重要意义和应用前景。  相似文献   

3.
重型汽车中桥减速器在工作过程中其摩擦副接触表面因相对运动而产生的磨损颗粒进入润滑油中,导致润滑油性能下降;磨损颗粒随润滑油进入摩擦副接触表面,摩擦副磨损加剧。根据重型汽车的运行特点,每隔一定里程数对减速器润滑油进行取样,综合分析在用润滑油中磨损颗粒物的大小、形貌及成分。结果表明:减速器在用润滑油中磨损颗粒主要成分是铁屑和铜屑,磨损颗粒主要来自于球面垫片(铜)及其配副的摩擦以及齿轮副间的摩擦。具体分析磨损颗粒产生过程及形成机制,为重型汽车中桥减速器中运动摩擦副的设计及制造提供理论依据。  相似文献   

4.
基于RTEC-MFT-5000型多功能磨损试验机,研究了纳米固体润滑颗粒作为润滑油添加剂对微凹坑织构表面摩擦学性能的影响。在研究中,应用NanoFocus共聚焦显微镜观测试样表面微织构形貌,获取磨痕处二维截面轮廓图。借助扫描电子显微镜和能谱仪,对磨损区域微凹坑形貌及磨痕部位微凹坑内外的元素成分进行分析。研究结果表明,添加纳米固体润滑颗粒的润滑油,在不同工况条件下均具有较优的减摩特性,固体润滑颗粒作为添加剂有助于在磨损区域形成一层固体润滑膜,减小摩擦副之间的摩擦因数,提高耐磨性能。含有纳米二硫化钼固体颗粒添加剂的润滑油,其减摩抗磨效果优于含有纳米石墨固体颗粒添加剂的润滑油。表面微织构技术与纳米固体润滑颗粒添加剂相结合,可以表现出更为优异的协同润滑效果。  相似文献   

5.
机械表界面行为和摩擦学密切相关,利用先进手段对摩擦副的表界面进行改性、改形和调控是目前的研究热点。表面微织构方法可以显著改善接触对表面摩擦特性。本文基于微织构的研究背景,论述了表面微织构加工方法、几何参数及其对摩擦性能的影响规律,阐述了微织构的减摩机理和应用,提出了后续的发展方向。  相似文献   

6.
针对航空发动机石墨密封常用的摩擦副浸渍磷酸盐石墨(M234Ao)和9Cr18Mo不锈钢材料,在UMT-TriboLab试验机上进行球-盘、销-盘接触摩擦试验,研究其低速轻载、高速重载工况以及干摩擦、油润滑下的摩擦磨损性能,利用接触式形貌仪、金相显微镜等对摩擦副表面进行观察分析,并分析其磨损机制。结果表明:在油润滑及面-面接触下的摩擦因数和磨损率明显低于干摩擦和点-面接触下;添加油介质可以降低界面摩擦剧烈程度,抑制金属氧化以及降低摩擦因数,特别是在高速重载工况下;M234Ao和9Cr18Mo配副间的磨损机制以磨粒磨损和黏着磨损为主,伴随有犁沟、微裂纹及擦伤现象。  相似文献   

7.
王璋  岳源  叶梯 《润滑与密封》2022,47(8):83-89
为探究低速冲击下界面响应与磨损行为之间的联系,开展多周次的低速冲击磨损实验;通过分析冲击过程中的接触力峰值、接触时长、接触力冲量、动能耗散等,研究冲击速度对接触界面的力学响应的影响;通过对冲击磨痕的磨损轮廓和形貌、磨损体积的检测分析,以及对磨痕区域元素组分变化的测试,研究冲击速度对接触界面磨损损伤行为的影响。结果表明:冲击速度的增加会导致接触界面在更短的时间内受到更强烈的力学作用;能量吸收率对冲击速度的变化不敏感,但冲击速度的提高会导致单位能量造成的磨损损伤逐渐降低;冲击磨痕可分为以塑性变形和以剥层磨损为主要损伤形式的2种区域;磨损区内经历了严重的摩擦氧化,并随着冲击速度的增加发生冲击副材料转移。因此,冲击速度越高,接触界面间的摩擦越剧烈,形成的表面氧化层避免了冲击副与基底材料的直接接触,延缓了磨损损伤的进一步发展。  相似文献   

8.
利用LM-YLP-20F-Ⅱ型激光打标机在45钢试件表面加工出具有规则排列的圆形微坑阵列。通过环-块线接触摩擦磨损试验,研究了激光表面织构对不同硬度45钢试件干摩擦磨损性能的影响。考察了激光微坑内部和外部的硬度,利用扫描电镜(SEM)观察了试件的磨损形貌,探讨了激光表面织构对不同硬度45钢试件干摩擦性能的影响机理。研究表明:激光表面织构的几何形貌对摩擦副的干摩擦磨损性能影响显著;在一定条件下,激光表面织构可以改善干摩擦的磨损性能;激光织构化处理会显著改变试件的表面硬度;当试件基体硬度较低时,微坑会支撑保护基体较软的材料,降低粘着磨损;而当基体硬度较高时,高硬度微坑对对偶面的磨粒磨削会增加,从而加剧摩擦副的磨粒磨损。  相似文献   

9.
合理的表面织构可有效改善摩擦副界面间的摩擦状态。为研究纳米流体与表面微织构耦合作用对硬质合金刀具材料摩擦性能的影响,采用“两步法”将纳米Fe3O4颗粒添加到水基切削液基础液,制备出质量分数为0.5%的Fe3O4纳米流体,并利用激光微加工技术在光滑的YG6X硬质合金样件表面制备出不同尺寸参数的沟槽型与凹坑型表面微织构。分析纳米流体与表面微织构耦合作用下硬质合金样件的摩擦磨损性能,整理摩擦系数、样件表面磨损形貌、磨球磨损率等数据发现,纳米流体能够有效改善基础液的润滑性能,在一定尺寸形状的织构样件相互作用下表现出优异的抗磨减摩性能,并且揭示了相应的减摩抗磨机理。  相似文献   

10.
沟槽形表面织构对摩擦噪声的影响   总被引:1,自引:0,他引:1  
用电加工方法在制动盘蠕墨铸铁材料表面加工出沟槽形表面织构(沟槽深度为30μm、宽度为150μm、间距为500μm),采用球—平面接触方式,选取直径为10mm的Si3N4球为对磨副,对沟槽形织构表面和光滑表面进行了摩擦噪声对比试验,研究了沟槽形表面织构对界面摩擦振动噪声的影响。试验结果表明(以下结论只针对本试验选定尺寸规格的沟槽形表面织构):法向载荷对织构表面产生摩擦噪声强度的影响较小,而对光滑表面产生摩擦噪声的水平具有重要影响;沟槽形织构表面在低法向载荷下较光滑表面更易产生摩擦噪声,但随着法向载荷从5N增大到10N,光滑表面产生的摩擦噪声强度迅速增大并与织构表面的接近;沟槽形表面织构使摩擦系统更易产生多频率的摩擦振动,较早地产生摩擦噪声且其主频率成分较复杂;沟槽形织构表面比光滑表面具有较高的摩擦因数和耐磨性,沟槽形织构的存在明显地改变了接触界面摩擦磨损行为和摩擦噪声特性,但其对应关系需要进一步深入研究。  相似文献   

11.
《Wear》2007,262(3-4):262-273
The objective of the present investigation was to assess the influence of SiC particle dispersion in the alloy matrix, applied load, and the presence of oil and oil plus graphite lubricants on the wear behaviour of a zinc-based alloy. Sliding wear performance of the zinc-based alloy and its composite containing SiC particles has been investigated in dry and lubricated conditions. Base oil or mixtures of the base oil with different percentages of graphite were used for creating the lubricated conditions. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloys. It was also observed that there exists an optimum concentration of graphite particles in the lubricant mixture that leads to the best wear performance. The composite experienced higher frictional heating and friction coefficient than the matrix alloy in all the cases except oil lubricated conditions; a mixed trend was noticed in the latter case. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.Examination of worn surfaces revealed a change of predominating wear mechanisms from severe ploughing and/or abrasive wear for base alloy to delamination wear for the reinforced material under dry sliding conditions. The presence of the lubricant increased the contribution of adhesive wear component while reducing the severity of abrasion. This was attributed to the generation of more stable lubricant films on the contacting surfaces. Cross-sections of worn surfaces indicated substantial wear-induced plastic deformation, thereby suggesting adhesive wear to be a predominant wear mechanism in this study. The debris particles revealed deformed flakes and machining chips signifying the involvement of adhesion and abrasion modes of wear respectively.  相似文献   

12.
Abstract

Wear behaviour of a zinc based alloy has been studied in partially lubricated condition. The test environment comprised a mixture of oil plus graphite/talc particles. The composition of the lubricant mixture was varied by changing the concentration of the solid lubricant particles suspended in the oil lubricant. Wear response of the alloy was noted to improve in terms of decreased wear rate, frictional heating and friction coefficient initially with the increasing concentration of the solid lubricant particles suspended in the oil lubricant. A critical content of the solid lubricant led to the best wear performance of the samples. This was followed by a reversal in the trend at concentrations of the solid lubricant particles in the lubricant mixture that were greater than the critical one. Wear behaviour of the alloy has been substantiated through the characteristics of wear surfaces, subsurface regions and debris particles.  相似文献   

13.
Dimpled textures were prepared by using a pulse solid laser on the surface of Al-Si alloy. The combination of laser surface texturing (LST) and MoS2 solid lubricant as well as their tribological properties were investigated in this article. The obtained friction and wear data were critically analyzed to investigate how the parameters of texture influence the tribological performance of Al-Si alloy. Furthermore, morphological investigations of the transfer layers on the worn surfaces were performed and the wear mechanisms are discussed. The results show that the combination of LST and solid lubricant improves the tribological characteristics of Al-Si alloy. The friction coefficient of Al-Si alloy: steel friction pairs can be reduced to 0.15 under dry friction. The lubrication mechanism is attributed to a synergetic effect of providing solid lubricant and traps wear debris in the dimples. It was found that the optimum density of structure was 37% for excellent tribological properties.  相似文献   

14.
The role played by an externally added solid lubricant like graphite towards controlling the sliding wear behaviour of a zinc-based alloy has been examined in this study. The influence of dispersing hard silicon carbide particles in the alloy was also investigated by testing the composite in identical test conditions. The wear performance of the zinc-based alloy and its composite was compared with that of a gray cast iron. Wear tests were performed in oil lubricated environment. Composition of the lubricant was changed by adding various quantities of graphite (particles) to the oil. The study suggests that the wear response (in terms of wear rate, frictional heating and friction coefficient) of the samples improved in the presence of suspended graphite particles in the oil lubricant. However, this improvement was noticed up to a critical content of graphite particles only and the trend reversed at still higher graphite contents. The zinc-based (matrix) alloy revealed highest wear rate. Dispersoid silicon carbide particles showed a significant improvement in the wear performance of the matrix alloy. The cast iron performed in between the matrix alloy and composite. The frictional heating and friction coefficient were the highest for the composite while the cast iron and the matrix alloy showed a mixed response. Examinations of wear surfaces, subsurface regions and debris particles helped to substantiate the observed wear response of the samples.  相似文献   

15.
It has been recognized that wear debris contains extensive information about wear and friction of materials. Investigation of wear debris is important for tribological research. In order to find out an effective way that is able to diagnose and predict the wear state of polymers, the authors investigated the relationship between the wear debris morphology and the wear behaviour of the bulk material. Polyetheretherketone (PEEK) was employed as the model material. Its sliding wear and friction properties were measured by means of a pin-on-disc apparatus. At a constant sliding velocity of 1 m s−1, the specific wear rate was independent of load under lower loading conditions (1–4 MPa) but increased with a rise in load under higher loading conditions (4–8 MPa). The coefficient of friction was insensitive to the variation of contact pressure. The possible mechanisms involved were analysed on the basis of the wear debris morphology as well as the wear performance. Fractal geometry, which describes non-Euclidean objects, was applied to the quantitative analysis of the boundary texture of the wear debris due to the fact that the qualitative assessment of the wear debris morphology was not effective enough to reflect the geometrical variation of the fragmental shapes. The experimental results demonstrated that the wear debris were fractals, and could be characterized with the fractal dimensions which were determined by the slit island method. In addition, it was found that the fractal dimension of the wear debris was closely related to the wear behaviour of PEEK, and can be regarded as a measure of wear rate.  相似文献   

16.
To improve friction and wear performance and service life of the disc-brake pair material of a drilling rig, a new type of asbestos-free frictional material with better performance for disc-brake blocks is developed, and its wear mechanism is investigated by friction and wear experiments. Topography and elementary components of the brake block’s wear surface are analyzed by employing SEM and EDAX patterns, revealing its tribological behaviour and wear mechanism. When the frictional temperature is lower, the surface film of the brake block is thinner, dense, smooth with plasticity, and divided into the mixture area, Feabundant area, carbon-abundant area and spalling area. The mixture area consists of various constituents of frictional pairs without ploughing and rolling trace. The Fe-abundant area mainly consists of iron and other constituents. The carbon-abundant area is the zone where graphite and organic fibre are comparatively gathered, while the spalling area is the zone where the surface film is spalled and its surface is rough and uneven, with a loose and denuded state. During the period of high frictional temperature, the frictional surface is also divided into the mixture area, Feabundant area and spalling area. In this case, the mixture area consists of abrasive dust from friction pairs, and the surface film is distributed with crumby hard granules, exiguous oxide, carbide granules and sheared slender fibre. The Fe-abundant area is mostly an oxide layer of iron with a flaky distribution. Fracture and spalling traces as well as an overlapping structure of multilayer surface films can be easily found on the surface film. The components of the spalling area are basically the same as that of the matrix. At the beginning of wear, the hard peaks from the friction surface of the disc-brake plough on the surface of the brake block. With increasing frictional temperature, the friction surface begins to soften and expand, and oxidized wear occurs at the same time. During the high-temperature wear period, severely influenced by friction heat, obvious softening and plastic flow can be found on the friction surface of the brake block, its anti-shearing ability is weakened, and adhesive wear is intensified. Thermal decomposition of cohesive material in the brake block is simultaneously strengthened, so that constituents shed due to loss of adhesion. Organic fibre is in a flowing state and obviously generates drawing, shearing, carbonization and oxidization. In addition, thermal cracking, thermal oxidization, carbonization and cyclization of organic substances on the surface of brake block can make the friction surface produce pores or cracks, thus fatigue wear occurs.  相似文献   

17.
To improve friction and wear performance and service life of the disc-brake pair material of a drilling rig, a new type of asbestos-free frictional material with better performance for disc-brake blocks is developed, and its wear mechanism is investigated by friction and wear experiments. Topography and elementary components of the brake block’s wear surface are analyzed by employing SEM and EDAX patterns, revealing its tribological behaviour and wear mechanism. When the frictional temperature is lower, the surface film of the brake block is thinner, dense, smooth with plasticity, and divided into the mixture area, Fe-abundant area, carbon-abundant area and spalling area. The mixture area consists of various constituents of frictional pairs without ploughing and rolling trace. The Fe-abundant area mainly consists of iron and other constituents. The carbon-abundant area is the zone where graphite and organic fibre are comparatively gathered, while the spalling area is the zone where the surface film is spalled and its surface is rough and uneven, with a loose and denuded state. During the period of high frictional temperature, the frictional surface is also divided into the mixture area, Fe-abundant area and spalling area. In this case, the mixture area consists of abrasive dust from friction pairs, and the surface film is distributed with crumby hard granules, exiguous oxide, carbide granules and sheared slender fibre. The Fe-abundant area is mostly an oxide layer of iron with a flaky distribution. Fracture and spalling traces as well as an overlapping structure of multilayer surface films can be easily found on the surface film. The components of the spalling area are basically the same as that of the matrix. At the beginning of wear, the hard peaks from the friction surface of the disc-brake plough on the surface of the brake block. With increasing frictional temperature, the friction surface begins to soften and expand, and oxidized wear occurs at the same time. During the high-temperature wear period, severely influenced by friction heat, obvious softening and plastic flow can be found on the friction surface of the brake block, its anti-shearing ability is weakened, and adhesive wear is intensified. Thermal decomposition of cohesive material in the brake block is simultaneously strengthened, so that constituents shed due to loss of adhesion. Organic fibre is in a flowing state and obviously generates drawing, shearing, carbonization and oxidization. In addition, thermal cracking, thermal oxidization, carbonization and cyclization of organic substances on the surface of brake block can make the friction surface produce pores or cracks, thus fatigue wear occurs.  相似文献   

18.
分散在润滑剂中的柔性金属微粒的摩擦学行为的实验研究   总被引:5,自引:3,他引:5  
本文通过理论和实验的不同角度,探讨和分析柔性金属微粒在摩擦学界面的摩擦磨损特性以及对摩擦界面可能的行为模式。为利用柔性金属微粒进行摩擦界面的修复和改性、强化和减少摩擦和磨损,提高效益提供一个实验基础。  相似文献   

19.
It is of a vital importance to reduce the frictional losses in marine diesel engines. Advanced surface textures have provided an e ective solution to friction performance of rubbing pairs due to the rapid development of surface engineering techniques. However,the mechanisms through which textured patterns and texturing methods prove beneficial remains unclear. To address this issue,the tribological system of the cylinder liner?piston ring(CLPR) is investigated in this work. Two types of surface textures(Micro concave,Micro V?groove) are processed on the cylinder specimen using di erent processing methods. Comparative study on the friction coe cients,worn surface texture features and oil film characteristics are performed. The results demonstrate that the processing method of surface texture a ect the performance of the CLPR pairs under the specific testing conditions. In addition the micro V?groove processed by CNCPM is more favorable for improving the wear performances at the low load,while the micro?con?cave processed by CE is more favorable for improving the wear performances at the high load. These findings are in helping to understand the e ect of surface texture on wear performance of CLPR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号