首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
采用RFG富氧燃烧方法在新疆某电厂350 MW机组锅炉上进行数值模拟,对燃烧时炉内温度场、CO与O2及NOx排放进行分析。结果表明:在21%、25%、29%富氧燃烧工况下,NOx排放浓度均低于空气燃烧时的浓度;四角切圆燃烧煤粉锅炉采用富氧燃烧后,炉膛出口NOx浓度由空气燃烧时的359 mg/m3分别降低到235 mg/m3、272 mg/m3、305 mg/m3;高浓度的CO2与煤粉反应生成CO,形成还原性氛围,有助于抑制NOx生成以及增大对已生成NOx还原的概率;在氧气含量为21%的浓度下,通过增加循环烟气中NO含量可以减少NOx的生成和排放。  相似文献   

2.
对125 MW煤粉炉内两种工况的分级燃烧进行了数值模拟,得到了炉内温度、速度分布以及NOx,CO,CO2等气相组分浓度分布.结果表明,随二次风率降低、燃尽风率的增加,炉内最高温度降低,炉内高温区上移,NOx浓度降低;整个炉膛内部湍流强度都比较强烈;炉内CO和CO2浓度分布及速度分布与实际燃烧状况能较好吻合,可为低NOx燃烧技术和锅炉改造提供指导.  相似文献   

3.
徐建  章祥林  靳廷甲 《硅酸盐通报》2016,35(6):1841-1846
为提高淮北矿区高灰分煤的燃烧效率,采用热重分析实验对比分析了Fe2O3和K2CO3对煤粉着火与燃尽温度、燃烧特性指数、放热面积的影响.结果发现Fe2O3和K2CO3可分别将煤粉的着火温度由480.3℃降低470.4℃和397.3℃,燃尽温度由628.4℃降到609.7℃和547.7℃,燃烧特性指数提高,放热量增大.利用SEM、XRD和FTIR测试技术对煤粉燃烧残余物的微观结构、物相组成及官能团变化进行研究,分析燃煤催化剂在燃烧反应中的作用机理;通过BET方程计算燃烧煤焦的比表面积,分析其孔隙结构的变化.结果表明Fe2O3和K2CO3的主要作用机理是促进燃烧反应过程中挥发分的析出,增强煤粉的吸附性能,加快燃烧反应过程中固定碳的燃烧.  相似文献   

4.
李慧  杨石  周建明 《洁净煤技术》2020,26(2):109-114
半焦是低阶煤经低温热解后的产物,其中半焦粉与煤粉工业锅炉常用煤种烟煤相比价格低廉。若能将半焦粉用作煤粉工业锅炉的燃料,既可拓宽煤粉工业锅炉的适用燃料范围,又可增强煤粉工业锅炉的市场竞争力。由于半焦挥发分低、固定碳高,实现其着火和稳定燃烧需要更高的温度,同时,降低NOx初始排放也是一个技术难题。为了实现半焦在煤粉工业锅炉中的稳定燃烧及NOx排放的降低,采用两段式滴管炉开展半焦空气分级燃烧NOx排放规律研究。笔者对半焦空气不分级燃烧NOx排放规律进行了研究,主要探究了主燃区温度(1 000~1 400℃)及过量空气系数的影响,为后续空气分级燃烧降低NOx的效果提供对比依据。半焦空气分级燃烧试验主要研究了主燃区温度(1 000~1 400℃)及二次风比例(0.4~0.8)的影响,并从燃尽率、NOx减少比例、灰样微观孔隙和形貌等方面进行论证,试验结果表明,在空气不分级燃烧条件下,即燃尽风配风比例为0时,随着主燃区温度升高,NOx排放浓度随之迅速升高;随着过量空气系数增加,NOx浓度先迅速增加,过量空气系数大于1.15时,NOx浓度增速变缓;在空气分级燃烧中,相同主燃区温度条件下,二次风比例由高到低变化时,NOx排放呈先迅速下降后缓慢回升的变化趋势,燃尽率先快速升高而后趋于平缓。二次风比例为0.56时(即燃尽风率为0.39),燃尽率达90%,NOx排放浓度降至最低,为120 mg/m^3以下,此时是试验条件下的最佳二次风比例。  相似文献   

5.
超细煤粉NOx和SO2排放特性与燃烧特性   总被引:6,自引:1,他引:6  
将合山煤分别制成常规粒度的煤粉与超细化煤粉 .在单只水平直流燃烧器燃烧室内进行了常规煤粉与超细化煤粉的燃烧特性、空气分级燃烧NOx 排放特性、炉内喷钙对超细化煤粉与常规煤粉燃烧SO2 排放特性的影响的燃烧试验研究 .试验研究表明 ,超细化煤粉与常规煤粉比较 ,着火提前 ,着火稳定性好 ,燃尽效果好 ;分级燃烧对超细煤粉的NOx 排放量的降低效果更显著 ;在Ca/S摩尔比相同的条件下 ,超细化煤粉的固硫特性明显优于常规煤粉 .  相似文献   

6.
利用国产wRT-3P型微热量天平与英国产KM91006烟气分析仪联用对不同变质程度的超细煤粉进行了超细煤粉低温(小于800℃)燃烧实验,并应用QuinTox—Firework软件对燃烧过程中NO。和SO2的生成量进行跟踪检测、数据采集和整理。实验表明煤经超细化处理后,煤粉燃烧过程中NOx和SO2的生成特性发生了改变。同时,超细煤粉在燃烧过程中产生的CO延缓了煤表面发生的强氧化反应,有利于H2S与煤中其他矿物质的反应生成硫化物如CaS。  相似文献   

7.
煤粉燃烧过程中生成的NOx主要是燃料型NOx,约占总量75%~80%,其余为热力型NOx和快速型NOx。煤粉低氮燃烧技术的核心是控制燃料型NOx的生成。通过对煤粉锅炉按照“先炉内、后炉外”的总体技术路线,采用炉内De-NOx低氮燃烧技术结合SNCR喷氨技术,将低氮燃烧技术应用于煤粉锅炉,将烟气氮氧化物有效控制在200mg/Nm^3以内。大大减少氨水、液氧等脱硝剂的投入量,既降低了运行成本又有效缓解了脱硝剂对设备及烟道的腐蚀,使烟气NOx排放浓度符合我国《火电厂大气污染物排放标准》。  相似文献   

8.
杨石 《洁净煤技术》2020,26(2):102-108
随着我国对大气污染物排放监管力度的日益严格,NOx控制技术已广泛应用于工业生产的各个领域。作为一种直接、简便的NOx排放控制技术,富氧空气燃烧技术已经出现在燃气锅炉和内燃发动机等行业,然而在燃煤锅炉行业中却鲜有应用。为了验证富氧空气燃烧技术在煤粉工业锅炉中的NOx减排效果,笔者以神府烟煤作为燃料,利用两段式滴管炉试验系统模拟煤粉在锅炉内燃烧的实际情况,采用热态试验方法,研究了烟煤富氧空气分级燃烧的NOx排放特性,并与单级供风、空气分级燃烧2种燃烧方式下的NOx排放情况进行对比。考察了主燃区温度、二次风配比(以主燃区过量氧气系数表示)、二次风氧浓度等关键因素对NOx排放的影响。结果表明:富氧空气分级燃烧的NOx排放显著低于单级供风燃烧,同时也低于空气分级燃烧的NOx排放。主燃区温度为1 300~1 500℃时,富氧空气分级燃烧的NOx排放减少比例比分级配风燃烧提高了6~12个百分点;富氧空气分级燃烧条件下,随主燃区温度升高,煤粉燃烧更加充分,燃料中N元素分解成NHi、HCN等大量中间产物,使主燃区气氛的还原性增强,被还原的NOx比例增加。因此,NOx排放降低且NOx排放减少比例呈现上升趋势;富氧空气分级燃烧的二次风配比对NOx排放具有显著影响,随着主燃区过量氧气系数的升高,NOx排放均呈现先降低后升高的趋势。因此存在最佳二次风配比,使NOx排放浓度最低。主燃区温度为1 300℃时,最佳主燃区过量氧气系数约为0.58;主燃区温度为1 500℃时,最佳主燃区过量氧气系数约为0.55;在主燃区过量空气系数给定的条件下,提高二次风氧浓度可以延长煤粉颗粒在主燃区的停留时间,并在煤粉颗粒表面形成局部富氧环境,促进煤粉充分燃烧,从而增强主燃区气氛的还原性,降低NOx的生成。因此,当二次风氧浓度为21%~31%时,NOx排放随二次风氧含量的升高而降低。随着二次风氧浓度的逐渐升高,NOx排放的降低趋势逐渐放缓。  相似文献   

9.
为达到严格的超低排放标准,目前国内绝大部分电站锅炉均实施了NOx排放控制技术改造。针对一台燃用烟煤的420 t/h四角切圆煤粉锅炉,将原双通道燃烧器改造为水平浓淡燃烧器并加装3层燃尽风(SOFA),从而达到低氮燃烧的效果。应用数值模拟方法进行方案论证,研究了一次风浓淡比、SOFA风率和SOFA风射流角度等参数对锅炉燃烧状况及NOx排放规律的影响,并提出最佳改造方案。随着浓淡比的增加,炉膛出口温度逐渐增加,而NOx含量逐渐降低。浓淡比为4∶1时,飞灰含碳量最低。随着浓淡比增大,CO浓度升高,增强了主燃区域的还原性,抑制挥发分含氮中间产物氧化成NO;另一方面,浓淡比增大使浓煤粉气流挥发分析出速率加快,强化挥发分含氮中间产物HCN和NH3将已生成的NO还原为N2;同时,淡侧气流煤粉浓度低,含氮基团析出量变小,与氧反应生成NO的量减少。随着SOFA风率的增加,炉膛出口烟温、飞灰含碳量增加,20%SOFA风率时,NOx浓度较高,SOFA风率由30%增加到40%时,NOx浓度基本保持不变。随着SOFA风率的增加,主燃区形成的低O2高CO浓度的强还原性气氛抑制了HCN及NH3被氧化成NO,反而促进了其与已生成的NO发生反应生成N2。此外,高SOFA风风率下,主燃区高温区缩小,生成的热力型NOx也相应减少。随着SOFA风射流角度上扬,还原区加长,有利于降低NOx浓度,但燃尽区的火焰中心会上升,煤粉燃尽时间变短,炉膛出口温度和飞灰含碳量上升。随射流角度增加,O2浓度降低而CO浓度升高,这是由于射流角度增大延迟了煤粉燃尽过程,增加了化学不完全燃烧损失;这种低氧高CO的强还原性气氛大大抑制了NOx生成。根据数值模拟结果,确定试验锅炉的低氮燃烧改造方案为:选择浓淡比为4∶1的水平浓淡燃烧器作为改造燃烧器,SOFA风率定为30%,SOFA射流角度上扬15°。改造后锅炉燃烧稳定,NOx排放显著降低,为220 mg/Nm3左右(降幅达65%~70%),而飞灰含碳量保持在3%~4%,表明改造方案可达到良好的低氮燃烧效果。  相似文献   

10.
ERD+燃煤饱和蒸汽催化燃烧(简称“ERD+”)脱硝技术是针对煤粉的燃烧特性,在提升煤粉燃烧速度及燃尽率的基础上达到高的脱硝效率。该技术作为燃烧中控制NOx与选择性非催化还原脱硝(SNCR)结合的新技术具有比传统燃烧中控制NOx技术脱硝率高、比SNCR运行成本低的特点。  相似文献   

11.
煤粉燃烧过程中SO2和NOx生成规律的研究   总被引:3,自引:0,他引:3  
郑瑛 《煤炭转化》1998,21(1):46-48
讨论了煤粉在实验室滴管护中燃烧时,SO2,NOx的生成量与炉内温度、停留时间以及煤粉粒度间的关系。实验温度范围为600℃~1000℃,煤粉停留时间为0.32s~0.55s,煤粉粒度为<0.063mm和0.112mm~0.2mm,实验结果对了解锅炉炉膛内SO2的分布规律具有一定的意义。  相似文献   

12.
煤粉锅炉炉膛燃烧一维数学模型的研究   总被引:1,自引:0,他引:1  
为了有效地进行直流煤粉多相流动与燃烧数值模拟,实现煤粉低NOx燃烧,本文在连续介质模型的框架中建立了综合考虑气—固两相流流动、燃烧与传热的直流煤粉燃烧一维数学模型。应用这一模型对一维煤粉炉炉膛内煤粉燃烧和气体燃烧的数值计算表明,该模型可快速有效地用于模拟直流煤粉多相流动与燃烧过程,给出炉内温度、NOx分布等主要参数。  相似文献   

13.
介绍了水泥窑烟气脱硝窑头和窑尾烧成系统改造的技术原理和改造方案,探讨采用窑头低氮煤粉燃烧技术可实现降低回转窑内热力型NOx产生量,采用窑尾分解炉还原燃烧控制技术可实现将回转窑内产生的热力型NOx还原,大大降低了整个系统NOx产生量。实践表明,窑头低氮煤粉燃烧技术和分解炉高强还原燃烧控制技术可实现脱硝效率60%以上,大大减少NOx排放总量,降低了氨水用量和脱硝成本。  相似文献   

14.
介绍了水泥窑烟气脱硝窑头和窑尾烧成系统改造的技术原理和改造方案,探讨采用窑头低氮煤粉燃烧技术可实现降低回转窑内热力型NOx产生量,采用窑尾分解炉还原燃烧控制技术可实现将回转窑内产生的热力型NOx还原,大大降低了整个系统NOx产生量。实践表明,窑头低氮煤粉燃烧技术和分解炉高强还原燃烧控制技术可实现脱硝效率60%以上,大大减少NOx排放总量,降低了氨水用量和脱硝成本。  相似文献   

15.
随着我国经济的飞速发展,作为重要基础材料的水泥产品需求量极大且趋于稳定。水泥生产过程中的NOx排放与燃煤火电厂和汽车尾气产生的NOx排放已成为空气污染的主要来源,而分解炉是降低水泥生产工艺中NOx排放的有效设备。笔者在引入高温烟气的模拟分解炉内进行空气分级燃烧试验,研究配风位置、配风比例以及石灰石/煤比例对分解炉内燃烧和NOx排放特性的影响规律。试验稳定过程中,高温烟气发生装置的给煤量和配风量保持不变。此时,高温烟气发生装置的时间平均温度为911℃,其产生的高温烟气温度稳定在750℃左右,高温烟气中NOx主要以NO和N2O的形式存在,其浓度分别为261.49×10^-6和12.96×10^-6。该股高温烟气将模拟实际回转窑产生的烟气进入分解炉内。在分解炉的上部区域(距离顶部0~2 000 mm区域)的温度为800~1 000℃,与实际分解炉运行温度一致,排放烟气中NOx主要以NO和N2O形式存在。随着中间配风位置的下移,煤粉燃烧放热区域下移,而顶部区域的石灰石吸热量变化较小,则原有热量平衡被打破且原有吸热量高于现有放热量,导致顶部区域内燃烧温度降低。此时,还原气氛中煤粉燃烧和石灰石分解反应时间均变长,导致NOx的还原反应更加充分。但石灰石分解产生的氧化钙(CaO)作为中间产物会促进NO的生成反应,其反应时间增加也促进了NO的生成;另一方面,石灰石作为催化剂参与焦炭和挥发分还原NO的反应过程,分解炉顶部区域的温度下降使得该还原反应变弱。综上,NO的最终排放浓度是以上反应的综合结果。随着配风位置的下移,该变化对NO的生成作用更加明显,故NO的排放浓度逐渐升高。当一级风量与二级风量的配风比例降低时,分解炉上部区域的煤粉燃烧份额减少和石灰石分解量降低,而分解炉下部区域的煤粉燃烧份额增加和未分解的石灰石份额增加,但石灰石的吸热增加量高于燃烧增加份额的放热量,因此分解炉内整体温度均降低。分解炉内NO浓度是由石灰石催化的氧化过程和还原过程综合决定的。一级风量变小时,尾部CO浓度随之增加,烟气中NO浓度呈现降低的趋势。当石灰石/煤比例增加时,分解炉内沿程温度逐渐下降。随着石灰石给粉量增加,分解炉内石灰石受热分解产生的CaO浓度增加,CaO催化NO还原反应更剧烈,从而NO浓度逐渐降低。而石灰石给粉量增加和分解炉温度降低的过程导致尾部的CO浓度升高。  相似文献   

16.
采用数值模拟方法研究了DD分解炉三次风管与上部生料管相对位置变化对炉内流场、温度场及组分浓度场的影响。结果表明,三次风管上移至6.3m处时,三次风在上部生料冲击下出现了向下的反向旋流效应将O2输运至上部煤粉燃烧区,使得煤粉可以充分燃烧,炉温升高,NOx浓度也随之上升。生料管的下移占据了煤粉燃烧的空间,当生料管移动至7.5m处时,部分煤粉将绕过生料至炉上部完成燃烧。三次风管上移及生料管的下移都对炉内NOx浓度有很大影响。在一定范围内,三次风管的上移可以降低NOx浓度,但由于O2逐渐远离煤粉燃烧区使得煤粉燃烧会受到严重影响。计算了五种情况下的生料分解率发现,A(T1R3)情况下的生料分解率最高,可达87.5%。综合炉内温度、组分分布及生料分解率计算结果在实际应用中推荐A方案,即三次风管与生料管分别位于4.4m和9.3m时比较合理。  相似文献   

17.
通过建立数学模型,在Fluent软件的基础上结合自编程序,对不同预热温度下高炉喷吹煤粉的燃烧进行了模拟,得到了预热温度对煤粉燃烧的影响规律. 模型中包含了煤粉与O2, CO2及水蒸汽的异相反应,且考虑了焦炭的燃烧反应. 确定了回旋区的大小与形状,将煤粉燃烧空间划分为4个区域,对不同区域分别提出不同假设进行处理. 计算结果表明,煤粉预热后进行喷吹可促进煤粉在风口前提前气化,使煤粉的燃烧区域前移,提高了煤粉在回旋区的燃尽率;预热温度每提高50℃,煤粉在回旋区的燃尽率平均提高2%.  相似文献   

18.
<正>0前言工业上常用的水煤浆是由煤粉、水和少量添加剂混合制成的非均相液固悬浮液体,是一种液态燃料。其进入炉膛的燃烧方式和燃料油相似,即通过喷嘴将其雾化成液滴,液滴在高温烟气中蒸发水分,然后像煤粉那样,析出挥发分、燃烧和燃烬。其燃烧时的火焰温度比常规煤粉燃烧器低100~150℃。目前,将水煤浆燃烧器应用于新型干法水泥工业中  相似文献   

19.
罗伟 《洁净煤技术》2020,26(2):93-101
焦炭气化反应对空气深度分级工况下燃烧及污染物的生成具有重要影响。笔者采用滴管炉试验与数值计算相结合的方法,研究了主燃区过量空气系数SR1在1.2→0.6变化过程中,焦炭气化对空气深度分级工况下煤粉燃烧和NOx排放特性的影响规律。通过对比滴管炉试验数据与传统模型和改进模型(考虑焦炭气化)结果可知,传统模型对空气分级燃烧的还原性气氛预测存在一定缺陷,改进模型与试验结果较吻合。滴管炉试验及改进模型计算结果表明,空气深度分级工况下,主燃区极度缺氧,燃烧过程由最初的挥发分着火(R1和R2)和焦炭不完全氧化(R4)过渡到以焦炭气化反应(R5和R6)为主导的燃烧状态,大量CO生成,高浓度CO2逐渐被消耗,直至还原区段结束,随着燃尽风加入,O2含量增加,CO被迅速消耗(以R2为主),CO2生成。空气分级工况下NOx排放特性表现为:燃烧器附近NOx浓度高,伴随还原性气氛的形成,出现一定程度的下降后保持较低的NOx水平,随着燃尽风的加入,出现一定程度的"反弹",这是因为还原区结束时,一部分未完全被还原的氮中间体在燃尽风加入后被迅速氧化造成的。  相似文献   

20.
对分解炉进行燃料分级燃烧改造,将燃料分级加入,在分解炉锥部形成还原区,还原窑内产生的热力型NOx,并抑制燃料型NOx的产生,同时配合操作优化调整,控制窑内燃烧气氛,减少窑头煤粉燃烧空气过剩系数,降低窑尾烟气氧含量,从而降低并稳定NOx的排放量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号