首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple procedure was developed for the preparation of glassy carbon electrodes modified with single wall carbon nanotubes (SWCNTs) and multilayers of SiΜο12Ο404−-[Ru(bpy)(tpy)Cl]+(byp; bipyridine, tpy; terpyridine). Layer-by-layer deposition technique was used for the multilayer formation of SiΜο12Ο404−-[Ru(bpy)(tpy)Cl]+ onto SWCNTs films. Based on the strong electrostatic attraction of oppositely charged species a Ru-complex/poly oxometalate hybrid film strongly and irreversibly adsorbed on the glassy carbon electrode modified with single walled carbon nanotubes. The multilayer assembly exhibited good stability and excellent electrochemical reversibility for both redox systems in the pH range1-7. It was found that up to fifteen monolayers could be deposited onto a carbon nanotube film with well defined redox behavior. The modified electrode shows excellent electrocatalytic activity towards sulfite oxidation. Due to synergistic effect between SWCNTs and oppositely charged species the repeated alternate adsorption of anions and cations by this simple dipping method leads to molecular sandwiches with interesting redox activity and remarkable stability.  相似文献   

2.
Platinum nanoparticles with a diameter of 2-3 nm were prepared and used in combination with single-wall carbon nanotubes (SWCNTs) for fabricating electrochemical sensors with remarkably improved sensitivity toward hydrogen peroxide. Nafion, a perfluorosulfonated polymer, was used to solubilize SWCNTs and also displayed strong interactions with Pt nanoparticles to form a network that connected Pt nanoparticles to the electrode surface. TEM and AFM micrographs illustrated the deposition of Pt nanoparticles on carbon nanotubes whereas cyclic voltammetry confirmed an electrical contact through SWCNTs between Pt nanoparticles and the glassy carbon (GC) or carbon fiber backing. With glucose oxidase (GOx) as an enzyme model, we constructed a GC or carbon fiber microelectrode-based biosensor that responds even more sensitively to glucose than the GC/GOx electrode modified by Pt nanoparticles or CNTs alone. The response time and detection limit (S/N = 3) of this biosensor was determined to be 3 s and 0.5 microM, respectively.  相似文献   

3.
Luo H  Shi Z  Li N  Gu Z  Zhuang Q 《Analytical chemistry》2001,73(5):915-920
The electrochemical behavior of a film of single-wall carbon nanotubes (SWNTs) functionalized with carboxylic acid groups was studied extensively on a glassy carbon (GC) electrode. One stable couple corresponding to the redox of the carboxylic acid group, which was supported by XPS and IR experiments, was observed. The electrode process involved four electrons, while the rate-determining step was a one-electron reduction. The SWNT film-modified electrode showed favorable electrocatalytic behavior toward the oxidation of biomolecules such as dopamine, epinephrine, and ascorbic acid.  相似文献   

4.
One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm(-2) at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning.  相似文献   

5.
The functionalization of single-walled carbon nanotubes (SWCNTs) by forming self-assembled supramolecular structure of 10,12-pentacosadiynoic acid (PCDA) on the carbon nanotube wall is reported. PCDA assemblies on SWCNTs (PCDA/SWCNTs) were polymerized by UV irradiation to extensively conjugated polydiacetylene (PDA). PDA/SWCNT was identified by absorption and emission spectroscopy, scanning and transmission electron microscopies (SEM and TEM) and atomic force microscopy (AFM). PDA/SCWNTs showed strong near-infrared (NIR) fluorescence caused by fluorescence resonance energy transfer (FRET) between PDA network and semiconducting SWCNT core. The micro-patterning of biotinylated PDA/SWCNT with FITC-avidin on biotinylated glass surface demonstrated the potential application for a bio-sensing device. Furthermore, the biocompatibility for mammalian cancer cells was tested by viability experiments, which revealed that the PDA/SWCNTs had very low toxicity below 31.3 mg/L in terms of pristine SWCNTs concentration. Also, PDA/SWCNTs inside the cells can be observed by NIR microscopy. This unique modular method of preparation can contribute to diverse functionalities for practical applications in various non-invasive cellular imaging.  相似文献   

6.
研究了单壁纳米管(SWCNT)与对三联苯(p-Terphenyl)分子的交互作用和束散现象.SWCNTs分别由电弧放电法和一氧化碳高压分解法(Hipco法)制备.比较了不同制备工艺及纯化处理后SWCNTs与p-Terphenyl交互作用及其束散程度.采用分光和显微镜等技术,探讨了SWCNTs及其与p-Terphenyl交互作用.应用X光能量消散(EDAX)技术,给出了纯化处理前后SWCNTs试样的元素分析.利用萤光分析和原子显微镜技术评估了SWCNTs交互作用及束散程度.研究显示:SWCNTs束散程度及其和p-Terphenyl交互作用的强弱与SWCNTs纯化程度有关.  相似文献   

7.
The doping behavior of single-walled carbon nanotubes (SWCNTs) was investigated with an emphasis on the control of the conformation of sodium dodecylbenzene sulfonate (NaDDBS) with sulfonate groups acting as an electro-withdrawing group. The conformation of adsorbed NaDDBS on SWCNTs was controlled as a function of the amount of NaDDBS. The doping behavior of SWCNTs was significantly affected by the dosing amount of NaDDBS due to the conformational change of NaDDBS adsorbed on the SWCNT surface, which affected the spatial distance between the SWCNT surface and the sulfonate groups in NaDDBS. At a higher concentration, the spatial distance between the sulfonate group in NaDDBS and SWCNT was not sufficiently close enough to dope SWCNT due to the repulsive forces between the sulfonate groups in NaDDBS. Alternatively, at a lower concentration, NaDDBS acted as a p-type dopant for SWCNTs. To this end, this paper demonstrates a new tendency of doping that is related to the adsorbed behavior of a dispersant.  相似文献   

8.
The adsorbed process of ferrocene on a glassy carbon (GC) electrode modified by multi-walled carbon nanotubes (MWNTs) and electrochemical properties of the adsorbed layers are investigated. It is found that the redox process of ferrocene in solution is controlled by diffusion and surface electrochemical steps on the MWNT/GC electrode in contrast to the diffusion-controlled process of ferrocene on the GC electrode. The adsorbed ferrocene exhibits a pair of well-defined redox waves in the potential range from − 0.2 V to 0.6 V. Interestingly, two pairs of obvious redox waves for the adsorbed ferrocene are observed at the switching potential over 0.8 V and the peak current values of redox waves in more positive potential increase with the enlarging switching potential. The electrochemical reaction model of ferrocene adsorbed on the MWNT/GC electrode is proposed.  相似文献   

9.
This study compares the mechanical and thermal properties of glassy and rubbery epoxy–matrix composites reinforced with 1 and 4 wt.% single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphite, and carbon nanofibers (CNFs). The tensile modulus of most glassy composites was higher than that of the epoxy and increased with higher filler concentration and 4% graphite/epoxy and 4% SWCNT/epoxy exhibited approximately the same highest tensile modulus. The elongation of glassy composites was significantly lower than that of the epoxy and decreased with increasing filler loading. Most rubbery composites showed a higher tensile modulus and elongation than the epoxy and the modulus increased with rising filler content and 4% SWCNT/epoxy showed the highest tensile modulus and tensile strength. In the rubbery regime, glassy and rubbery composites displayed a higher storage modulus than the corresponding epoxy and 4 wt.% SWCNT/epoxy composites showed a 300% improvement in storage modulus compared to the epoxy.  相似文献   

10.
Polyurethane (PU)-grafted carbon nanotubes were synthesized by the coupling of alkyne moiety decorated single walled carbon nanotube (SWCNT) with azide moiety containing PU using Cu(I) catalyzed Huisgen [3 + 2] cycloaddition click chemistry. The azide moiety containing poly(s-caprolactone)diol was synthesized by ring-opening polymerization and further used for PU synthesis. Alkyne-functionalizion of SWCNT was completed by the reaction of p-aminophenyl propargyl ether with SWCNT using a solvent free diazotization procedure. Nuclear magnetic resonance, Fourier transform infrared, and Raman spectroscopic measurements confirmed the functionalization of SWCNT. Scanning electron microscopy and transmission electron microscopy images showed an excellent dispersion of SWCNTs, and specially debundling of SWCNTs could be observed due to polymer assisted dispersion. A quantitative grafting was successfully achieved even at high content of functional groups.  相似文献   

11.
In this study, horseradish peroxidase/nickel oxides nanoparticles/glassy carbon (HRP/NiO NPs/GC) electrode was prepared by first applying nickel oxides nanoparticles on glassy carbon surface and then horseradish peroxidase immobilized on the NiO NPs. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used as a diagnostic tools to identify the synthesized NiO NPs. Immobilized HRP showed an electrochemical redox behavior pertained to HRP(Fe(III)–Fe(II)) by direct electron transfer between protein and nanoparticles with a formal potential (E0′) of ? 55.5 mV (vs. Ag/AgCl and 141.5 mV vs. NHE) in 50 mM phosphate buffer solution (PBS). The anodic charge transfer coefficient (α) and heterogeneous electron transfer rate constant (ks) were 0.42 and 0.75 s? 1, respectively. Biocatalytic activity of HRP/NiO NPs/GC electrode for reduction of hydrogen peroxide and application to hydrogen peroxide determination was exemplified.  相似文献   

12.
Metal nanoparticles (Pt, Au, or Cu) together with multiwalled and single-walled carbon nanotubes (MWCNT and SWCNT) solubilized in Nafion have been used to form nanocomposites for electrochemical detection of trinitrotoluene (TNT) and several other nitroaromatics. Electrochemical and surface characterization by cyclic voltammetry, AFM, TEM, SEM, and Raman spectroscopy confirmed the presence of metal nanoparticles on CNTs. Among various combinations tested, the most synergistic signal effect was observed for the nanocomposite modified glassy carbon electrode (GC) containing Cu nanoparticles and SWCNT solubilized in Nafion. This combination provided the best sensitivity for detecting TNT and other nitroaromatic compounds. Adsorptive stripping voltammetry for TNT resulted in a detection limit of 1 ppb, with linearity up to 3 orders of magnitude. Selectivity toward the number and position of the nitro groups in different nitroaromatics was very reproducible and distinct. Reproducibility of the TNT signal was within 7% (n = 8) from one electrode preparation to another, and the response signal was stable (+/-3.8% at 95% confidence interval) for 40 repeated analyses with 10 min of preconditioning. The Cu-SWCNT-modified GC electrode was demonstrated for analysis of TNT in tap water, river water, and contaminated soil.  相似文献   

13.
Zhang Q  Yang S  Zhang J  Zhang L  Kang P  Li J  Xu J  Zhou H  Song XM 《Nanotechnology》2011,22(49):494010
A novel hybrid nanomaterial (GO-MWNTs) was explored based on the self-assembly of multiwall carbon nanotubes (MWNTs) and graphene oxide (GO). Compared with pristine MWNTs, such a nanocomposite could be well dispersed in aqueous solution and exhibit a negative charge. Driven by the electrostatic interaction, positively charged horseradish peroxidase (HRP) could then be immobilized onto GO-MWNTs at the surface of a glassy carbon (GC) electrode to form a HRP/GO-MWNT/GC electrode under mild conditions. TEM was used to characterize the morphology of the GO-MWNT nanocomposite. UV-vis and FTIR spectra suggested that HRP was immobilized onto the hybrid matrix without denaturation. Furthermore, the immobilized HRP showed enhanced direct electron transfer for the HRP-Fe(III)/Fe(II) redox center. Based on the direct electron transfer of the immobilized HRP, the HRP/GO-MWNT/GC electrode exhibited excellent electrocatalytic behavior to the reduction of H(2)O(2) and NaNO(2), respectively. Therefore, GO-MWNTs could provide a novel and efficient platform for the immobilization and biosensing of redox enzymes, and thus may find wide potential applications in the fabrication of biosensors, biomedical devices, and bioelectronics.  相似文献   

14.
We have modified single walled carbon nanotubes (SWCNTs) with well defined matrix-based architectures to improve interface interaction in SWCNT/epoxy composites. The hardener and two pre-synthesized oligomers containing epoxy and hardener moieties were covalently attached to the SWCNT walls by in?situ diazonium or carboxylic coupling reactions. In this way, SWCNTs bearing amine or epoxide-terminated fragments of different molecular weights, which resemble the chemical structure of the cured resin, were synthesized. A combination of characterization techniques such as Raman and infrared absorption (FTIR) spectroscopy, elemental analysis and coupled thermogravimetry-FTIR spectroscopy were used to identify both the functional groups and degree of functionalization of SWCNTs synthesized by the laser ablation and arc-discharge methods. Depending on the type of reaction employed for the chemical functionalization and the molecular weight of the attached fragment, it was possible to control the degree of functionalization and the electronic properties of the functionalized SWCNTs. Improved dispersion of SWCNTs in the epoxy matrix was achieved by direct integration without using solvents, as observed from optical microscopy and rheology measurements of the SWCNT/epoxy mixtures. Composite materials using these fillers are expected to exhibit improved properties while preserving the thermosetting architecture.  相似文献   

15.
DH Kim  JG Park 《Nanotechnology》2012,23(32):325401
In the current study, we fabricated polymer (poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C(61) butyric-acid methyl-ester (PCBM) blend) photovoltaic (PV) cells embedded with p-type single walled carbon nanotubes (SWCNTs) with tangled hair morphology. The power conversion efficiency (PCE) rapidly increased with SWCNT concentration of up to 6.83% coverage, and then decreased and saturated with increasing SWCNT concentration; i.e., the PCE peaks at 5.379%. This tendency is mainly associated with hole transport efficiency toward the transparent electrode (indium-tin-oxide (ITO)) via SWCNTs, directly determining the series resistance and shunt resistance of the polymer PV cells embedded with SWCNTs: the PV cell is increasing shunt resistance and decreasing series resistance.  相似文献   

16.
The energy and Young's modulus as a function of tube length for (10, 10) armchair single-walled carbon nanotubes (SWCNTs) are investigated by using a linear scaling self-consistent-charge density functional tight binding (SCC-DFTB) method. It is found that the formula derived from total energy for a zigzag SWCNT [Physica B404, 3930 (2009)] can be also used to explain these calculated length-dependent properties. Moreover, a transition occurs from fast change of length-dependent properties of the SWCNT to their slow change. This transition corresponds to the SWCNT's length of about 5 nm. The length for the armchair SWCNT is about one half of that of the corresponding Zigzag SWCNTs. In addition, a definition of volume for a short SWCNT is discussed.  相似文献   

17.
采用电沉积法在玻碳(GC)电极表面合成纳米级聚吡咯(PPy),通过扫描电镜得到PPy的形貌。以PPy为载体,通过吸附法固定葡萄糖氧化酶(GOD),得到GOD/PPy/GC电极。利用循环伏安法对GOD/PPy/GC电极的电化学行为进行分析,结果表明,以PPy为载体可以很好地固定GOD并保持其生物活性。在0.1mol/L磷酸盐缓冲溶液中,无任何电子媒介体存在时,GOD/PPy/GC电极显示了很好的电催化性能。  相似文献   

18.
Percolation of individual single walled carbon nanotubes (SWCNTs) and of SWCNT bundles dispersed in a non-interacting polymeric matrix has been analyzed computationally using an analytical model and a numerical simulation method. While the analytical model used is strictly valid only in the limit of an infinite length-to-diameter aspect ratio of the dispersed phase, good agreement is found between its predictions and the ones obtained using a computationally-intensive numerical method for the aspect ratios as small as 350. Since the aspect ratio of the individual SWCNTs is on the order of 1,000–10,000, this finding suggests that the analytical model can be used to study SWCNT percolation phenomena.An electrical network model is also applied to the percolating and near-percolating SWCNT clusters in order to compute the dc electrical conductivity of a CP2 polyimide + SWCNT composite material. A reasonably good agreement is obtained between the computational and the experimental results with respect to both the magnitude of the electrical conductivity and to its behavior in the vicinity of the percolation threshold.  相似文献   

19.
Herein a simple and effective approach is introduced to functionalize single walled carbon nanotubes (SWCNTs) by in-situ grafting of hydroxyapatite (HA). The pristine SWCNTs were chemically activated through introduction of carboxylic groups on their surfaces by refluxing in the mixture of H(2)SO(4) and HNO(3). The resulting carboxylated SWCNTs were further utilized for grafting of HA. The Fourier transform infrared and Raman spectroscopic studies demonstrated the formation of HA and its grafting over SWCNTs. The phase composition of HA and existence Ca(2+) and PO(4) (3-) ions were studied using X-ray diffraction and energy dispersive X-ray analyses, respectively. The surface morphology of functionalized SWCNTs was analyzed using scanning electron microscopy and transmission electron microscopy. Thermogravimetric analysis confirmed the existence of HA on SWCNTs by exhibiting different thermogram for pure HA and functionalized SWCNTs. Overall this method produced uniform grafting of low crystalline HA on carboxylated SWCNTs with strong interfacial bonding.  相似文献   

20.
The use of the Taguchi method to optimize the processing parameters for the synthesis of high-quality single-walled carbon nanotubes (SWCNTs) in a vertical chemical vapor deposition reactor was demonstrated. An investigation containing 18 experiments featuring different parameters and levels was performed. SWCNTs with a low intensity D-band to G-band ratio of 0.027 of a Raman spectrum were obtained when the optimal processing conditions were adopted. The quantitative contribution of the processing parameters can be calculated using the analysis of variance. According to the analysis, the reactor temperature and the evaporation temperature of ferrocene significantly affect the graphitization of the synthesized SWCNTs, while the chamber pressure exerts an insignificant effect. The formation of carbon nanotube films with entangled networks during synthesis was recorded using a digital camera, and a synthesis mechanism was proposed. Using the optimal parameters, SWCNT fluff with a diameter of 7.0 cm and SWCNT roving with a diameter of approximately 1.0 cm and a length of over 30.0 cm can be attained. In this work, field-emission scanning electron microscopy and Raman spectroscopy and high-resolution transmission electron microscopy were adopted to examine the morphology and microstructure, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号