首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
本文概述了碳纳米管的结构性能及制备技术,并介绍了目前有关碳纳米材料特别是碳纳米管储氢的理论与实验上的研究进展。  相似文献   

2.
碳纳米管储氢的研究与进展   总被引:8,自引:0,他引:8  
本文概述了碳纳米管的结构性能及制备技术,交介绍了目前有关碳纳米材料的特别是碳纳米管储氢的理论与实验上的研究进展。  相似文献   

3.
碳纳米管储氢   总被引:3,自引:0,他引:3  
近年来,碳纳米管由于其独特的力学、电学等性能以及在众多方面的潜在应用,越来越受到世界各国科学家的关注。最近,碳纳米管由于其大表面积和中空的结构,被应用于氢气储存。本介绍了该领域最新的一些研究结果。  相似文献   

4.
应用密度泛函理论(DFT)分析了与常温、高压储氢试验和计算机分子模拟有相同管结构参数碳纳米管的低温吸附储氢性能。理论计算包括定压下,管内密度分布与温度变化的关系,定温、定压下,纳米结构变化对密度分布的影响,碳纳米管可利用容积比率(UCR)与系统压力、温度的关系,典型管径碳纳米管的吸附等温线。计算结果显示了碳纳米管良好的低温吸附储氢潜力。  相似文献   

5.
碳纳米管储氢   总被引:11,自引:0,他引:11  
近年来,碳纳米管由于其独特的力学、电学等性能以及在众多方面的潜在应用,越来越受到世界各国科学家的关注.最近,碳纳米管由于其大表面积和中空的结构,被应用于氢气储存.本文介绍了该领域最新的一些研究结果  相似文献   

6.
水热合成碳纳米管的电化学储氢性能研究   总被引:1,自引:0,他引:1  
采用水热法制备了多壁碳纳米管(MCNTs)。以X射线衍射、透射电子显微镜等手段对所制碳纳米管进行了表征:管直径在50 nm左右,长度多为5~20μm,管壁厚度一般不超过10nm。电化学测试表明碳纳米管的放电容量约为398mAh.g-1,相当于1.5%的储氢量。  相似文献   

7.
大幅提高碳纳米管储氢容量的微观结构优化工艺   总被引:4,自引:0,他引:4  
根据微孔填充和吸附理论,发现一种微观结构优化工艺,即通过“HNO3/HCl HNO3/HF 空气氧化”三步法处理碳纳米管,可以使管两端绝大部分封闭的端口打开,管平均内径由 5nm扩大到 20nm,管壁大大变薄,团聚的碳纳米管束成为独立存在的碳纳米管,比表面积提高约 2. 5 倍, 由 180. 5m2/g 提高到649.5m2/g,质量储氢分数提高约 7 倍,由 0.91%(质量分数)提高到 7.60%(质量分数),已超过美国能源车用储氢系统的标准。本研究表明碳纳米管的微观结构组织对其储氢性能有至关重要的影响。  相似文献   

8.
陈卓  董娴  郭军  程琥 《纳米科技》2013,(5):61-64
采用乙醇催化裂解法制备碳纳米管,有效解决了以烃为碳源制备的碳纳米管的团聚、长度不可控、分离纯化复杂、得率低的难题,通过透射电镜和拉曼光谱分析表明,使用乙醇催化裂解法可以直接制备纯度高、管长适中的离散碳纳米管。这种碳纳米管在600%以下时不分解,吸附性能优异,在298%、15MPa时最大吸氢量为6.90%,远高于以苯为碳源制备的碳纳米管的最大吸氢量(1.65%),已达到美国能源车用储氢系统的标准。  相似文献   

9.
不同管径碳纳米管电化学储氢性能的比较   总被引:2,自引:0,他引:2  
付小娟  张海燕  周纯  尹建峰  李明华 《材料导报》2005,19(10):117-120,138
比较了5种不同管径碳纳米管的电化学储氢能力.采用三电极体系,Ni(OH)2/NiOOH为对电极,CNTs-Ni(质量比为1:9)为工作电极,Hg/HgO为参比电极,30%的KOH作为电解液.实验结果显示:在同等制作条件和200mA/g的充放电电流密度,0.1V的放电终了电压下,10~30nm的碳管储氢能力最好,克容量最大为480.6mAh/g,相应的平台电压高达0.92V;20~40nm的最高克容量为430.5mAh/g,仅低于10~30nm的电化学储氢量.10~20nm、40~60nm和60~100nm碳管的电化学储氢量分别是:401.1mAh/g、384.7mAh/g和298.3mAh/g.由此可见碳纳米管的管径大小也是影响其电化学储氢性能的一大因素.纯镍电极在同等条件下的最高放电量只有17.8mAh/g,对整个电极放电量的影响可以忽略不计.  相似文献   

10.
论述了目前几种主要固体储氢材料的研究进展,包括金属基合金材料(镁系合金、稀土系合金、钛系合金和锆系合金)、碳基材料(活性炭、石墨纳米纤维、碳纳米纤维和碳纳米管)、玻璃微球、配合物以及金属有机框架物。通过比较各种材料储氢的机理与方式、吸放氢的温度与压力、循环寿命,分析了其优缺点,并展望了固体储氢材料未来的发展趋势,认为开发安全稳定高效的复合储氢材料、实现固体储氢材料的工业化制备是未来储氢材料研究的新方向。  相似文献   

11.
Single=walled carbon nanotubes(SWNTs) were synthesized by a hydrogen arc discharge method.A high yield of gram quantity of SWNTs per hour was achieved.Tow kinds of SWNT products:web-like substancea and thin films in large slices were obtained. Results of resonant Raman scattering measurements indicate that the SWNTs prepared have a wider diameter distribution and a larger mean diameter.Hydrogen uptake measurements of the two kinds of SWNT samples(both as prepared and pretreated) were carried out using a high pressure volumetric method,respectively.And a hydrogen storage capacity of 4 wt pct could be repeatedly achieved for the suitably pretreated SWMNTs,whicb indicates that SWNTs may be a promising hydrogen storge material.  相似文献   

12.
本文简要回顾了储氢材料研究的发展情况 ,主要介绍了纳米碳管储氢的实验进展。作者对纳米碳管储氢的机理方面进行了初步探讨 ,针对单壁纳米碳管 ,提出了一种解离凝聚机制  相似文献   

13.
纳米碳管是一种性能优异的新型功能材料.利用循环失效后的AB5型贮氢合金电极材料作为反应催化剂、乙炔气体作为原料气体通过CVD法制备出多壁纳米碳管,研究了经过破碎、清洗、氧化处理后的失效AB5型贮氢合金电极材料在合成纳米碳管中的催化性能,讨论了不同氧化温度处理催化剂对纳米碳管产率、形貌和结构稳定性的影响.结果表明,氧化处理温度对催化剂的催化效能有明显的影响,600℃为最佳氧化处理温度.以氧化处理后的失效AB5型贮氢合金电极材料作为催化剂制备碳纳米管,方法简单易行,为废旧镍氢电池负极材料的回收再利用提供了一种新的思路.  相似文献   

14.
对商用MmMn0.4Co0.7Al0.3Ni3.4贮氢合金中添加多壁碳纳米管(CNTs)、Ni的电化学性能进行了研究.结果表明,CNTs的加入可以提高电极的放电容量和初始活化性能,合金中添加CNTs、CNTs+Ni的电极完全活化只需11个循环,其最大放电容量分别为255、271mAh/g.而添加Ni的电极则需24个循环才达到最大容量(245mAh/g);合金中添加CNTs、CNTs+Ni的电极具有更高的放电平台和更好的高倍率放电性能(HRD),在1000mAh/g放电电流下,添加CNTs、CNTs+Ni、Ni以及未添加电极的HRD值依次为80.5%、83.9%、66.9%和62.4%,线性极化和电化学阻抗测试表明,CNTs的加入可有效减少欧姆电阻、提高电极表面的电荷迁移速率,更有利于在大电流下进行放电.  相似文献   

15.
对商用MmMn0.4Co0.7Al0.3Ni3.4贮氢合金中添加多壁碳纳米管(CNTs)、Ni的电化学性能进行了研究.结果表明,CNTs的加入可以提高电极的放电容量和初始活化性能,合金中添加CNTs、CNTs+Ni的电极完全活化只需11个循环,其最大放电容量分别为255、271mAh/g.而添加Ni的电极则需24个循环才达到最大容量(245mAh/g);合金中添加CNTs、CNTs+Ni的电极具有更高的放电平台和更好的高倍率放电性能(HRD),在1000 mAh/g放电电流下,添加CNTs、CNTs+Ni、Ni以及未添加电极的HRD值依次为80.5%、83.9%、66.9%和62.4%,线性极化和电化学阻抗测试表明,CNTs的加入可有效减少欧姆电阻、提高电极表面的电荷迁移速率,更有利于在大电流下进行放电.  相似文献   

16.
17.
梁浩  廖彬  范瑛  谭云  梅军 《材料导报》2007,21(F11):306-308,321
介绍了近几年V基贮氢合金的研究进展,总结出V基合金具有如下特点:室温有效吸氢量可达2.4wt%以上,吸放氢循环性能优良,室温平台压力可达几个大气压,放氢效率不高,成本较高,但有可能通过利用廉价钒铁原料制备合金的方式降低成本。同时,提出了后续研发重点。  相似文献   

18.
19.
非掺杂金属型碳纳米管的电导特性   总被引:1,自引:0,他引:1  
依据介观物理学的基本概念、半经典电子输运理论和碳纳米管的电子结构,对非掺杂直状金属型单层碳纳米管(SWNTs)的电导特性进行理论研究,计算表明;SWNTs的电导是量子化的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号