首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
This article reviews advances in the design and development of multifunctional carbon-based and/or magnetic nanoparticle systems (or simply 'nanocarriers') for early cancer diagnosis and spatially and temporally controlled therapy. The critical issues in cancer diagnosis and treatment are addressed based on novel nanotechnologies such as real-time in-vivo imaging, drug storage and release, and specific cancer-cell targeting. The implementation of nanocarriers into animal models and the subsequent effectiveness in treating tumors is also reviewed. Recommendations for future research are given.  相似文献   

2.
Modular protein engineering is suited to recruit complex and multiple functionalities in single-chain polypeptides. Although still unexplored in a systematic way, it is anticipated that the positioning of functional domains would impact and refine these activities, including the ability to organize as supramolecular entities and to generate multifunctional protein materials. To explore this concept, we have repositioned functional segments in the modular protein T22-GFP-H6 and characterized the resulting alternative fusions. In T22-GFP-H6, the combination of T22 and H6 promotes selfassembling as regular nanoparticles and selective binding and internalization of this material in CXCR4-overexpressing tumor cells, making them appealing as vehicles for selective drug delivery. The results show that the pleiotropic activities are dramatically affected in module-swapped constructs, proving the need of a carboxy terminal positioning of H6 for protein self-assembling, and the accommodation of T22 at the amino terminus as a requisite for CXCR4^+ cell binding and internalization. Furthermore, the failure of self-assembling as regular oligomers reduces cellular penetrability of the fusions while keeping the specificity of the T22-CXCR4 interaction.All these data instruct how multifunctional nanoscale protein carriers can be designed for smart, protein-driven drug delivery, not only for the treatment of CXCR4^+ human neoplasias, but also for the development of anti-HIV drugs and other pathologies in which CXCR4 is a relevant homing marker.  相似文献   

3.
4.
Ischemic heart disease is the leading cause of death globally. Severe myocardial ischemia results in a massive loss of myocytes and acute myocardial infarction, the endocardium being the most vulnerable region. At present, current therapeutic lines only ameliorate modestly the quality of life of these patients. Here, an engineered nanocarrier is reported for targeted drug delivery into the endocardial layer of the left ventricle for cardiac repair. Biodegradable porous silicon (PSi) nanoparticles are functionalized with atrial natriuretic peptide (ANP), which is known to be expressed predominantly in the endocardium of the failing heart. The ANP–PSi nanoparticles exhibit improved colloidal stability and enhanced cellular interactions with cardiomyocytes and non‐myocytes with minimal toxicity. After confirmation of good retention of the radioisotope 111‐Indium in relevant physiological buffers over 4 h, in vivo single‐photon emission computed tomography (SPECT/CT) imaging and autoradiography demonstrate increased accumulation of ANP–PSi nanoparticles in the ischemic heart, particularly in the endocardial layer of the left ventricle. Moreover, ANP–PSi nanoparticles loaded with a novel cardioprotective small molecule attenuate hypertrophic signaling in the endocardium, demonstrating cardioprotective potential. These results provide unique insights into the development of nanotherapies targeted to the injured region of the myocardium.  相似文献   

5.
6.
In the present study, we developed aptamer (Apt) conjugated mesoporous silica nanoparticles (MSNs) for specific delivery of epirubicin (EPI) to breast cancer cells. MSNs were synthesized and functionalized with 3-mercaptopropyltrimethoxysilane (3-MPTMS), followed by MUC1 aptamer conjugation through disulfide bonds. The nanoparticles were analyzed by transmission electron microscopy (TEM), particle size analyzer, zeta potential, elemental analysis (CHNS), aptamer conjugation efficiency, drug loading efficiency, and drug release profile. Cell uptake and in vitro cytotoxicity of different formulations were performed. The results of MSNs characterization confirmed spherical nanoparticles with thiol functional groups. Particle size of obtained nanoparticles was 163?nm in deionized water. After conjugation of MUC1 aptamer and EPI loading (MSN-MUC1-EPI), particle size increased to 258?nm. The aptamer conjugation to MSNs with disulfide bonds were confirmed using gel retardation assay. Cellular uptake studies revealed better cell uptake of MSN-MUC1-EPI compared to MSN-EPI. Moreover, cytotoxicity study results in MCF7 cell lines showed improved cytotoxicity of MSN-MUC1-EPI in comparison with MSN-EPI or EPI at the same concentration of drug. These results exhibited that MSN-MUC1-EPI has the potential for targeted drug delivery into MUC1 positive breast cancer cells to improve drug efficacy and alleviate side effects.  相似文献   

7.
Hollow mesoporous silica nanoparticles (HMSNs) have become an attractive drug carrier because of their unique characteristics including stable physicochemical properties, large specific surface area and facile functionalization, especially made into intelligent drug delivery systems (DDSs) for cancer therapy. HMSNs are employed to transport traditional anti-tumor drugs, which can solve the problems of drugs with instability, poor solubility and lack of recognition, etc., while significantly improving the anti-tumor effect. And an unexpected good result will be obtained by combining functional molecules and metal species with HMSNs for cancer diagnosis and treatment. Actually, HMSNs-based DDSs have developed relatively mature in recent years. This review briefly describes how to successfully prepare an ordinary HMSNs-based DDS, as well as its degradation, different stimuli-responses, targets and combination therapy. These versatile intelligent nanoparticles show great potential in clinical aspects.  相似文献   

8.
The use of biodegradable polymeric nanoparticles (NPs) for controlled drug delivery has shown significant therapeutic potential. Polyaspartic acid and polylactic acid are the most intensively studied biodegradable polymers. In the present study, novel amphiphilic biodegradable co-polymer NPs, poly(L-aspartic acid-co-lactic acid) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) (poly(AA-co-LA)/DPPE) is synthesized and subsequently used to encapsulate an antitumor drug doxorubicin (DOX). The formulation parameters of the NPs are optimized to improve encapsulation efficiency. The resulting drug-loaded NPs possess better size homogeneity (polydispersity) and exhibit pH-responsive drug release profiles. Cellular viability assays indicate that the poly(AA-co-LA)/DPPE NPs did not induce cell death, whereas doxorubicin encapsulated NPs were cytotoxic to various types of tumor cells. In addition, the free NPs could not enter the cell nuclei after internalized in tumor cells. The DOX-loaded NPs exhibit efficient intracellular delivery in tumor cells with co-localization in lysosome and delay entering into the nucleus, which suggests a time- and pH-dependent drug release profile within cells. When applied to deliver chemotherapeutics to a mouse xenograft model of human lung adenocarcinoma, DOX-loaded NPs have a comparable antitumor activity with free DOX, and greatly reduce systemic toxicity and mortality. The delivery of cytotoxic drugs directly to the nucleus specifically within tumor cells is of great interest. These results demonstrate the feasibility of the application of the amphiphilic polyaspartic acid derivative, poly(AA-co-LA)/DPPE, as a nanocarrier for cell nuclear delivery of potent antitumor drugs.  相似文献   

9.
Simvastatin (Sim) is a widely known drug in the treatment of hyperlipidemia, which has attracted so much attention in bone regeneration due to its potential osteoanabolic effect. However, repurposing of Sim in bone regeneration will require suitable delivery systems that can negate undesirable off-target/side effects. In this study, we have investigated a new lipid nanoparticle (NP) platform that was fabricated using a binary blend of emulsifying wax (Ewax) and glyceryl monooleate (GMO). Using the binary matrix materials, NPs loaded with Sim (0–500?µg/mL) were prepared and showed an average particle size of about 150?nm. NP size stability was dependent on Sim concentration loaded in NPs. The suitability of NPs prepared with the binary matrix materials in Sim delivery for potential application in bone regeneration was supported by biocompatibility in pre-osteoclastic and pre-osteoblastic cells. Additional data demonstrated that biofunctional Sim was released from NPs that facilitated differentiation of osteoblasts (cells that form bones) while inhibiting differentiation of osteoclasts (cells that resorb bones). The overall work demonstrated the preparation of NPs from Ewax/GMO blends and characterization to ascertain potential suitability in Sim delivery for bone regeneration. Additional studies on osteoblast and osteoclast functions are warranted to fully evaluate the efficacy of Sim-loaded Ewax/GMO NPs using in-vitro and in-vivo approaches.  相似文献   

10.
In the past decade, mesoporous silica nanoparticles (MSNs) have attracted more and more attention for their potential biomedical applications. With their tailored mesoporous structure and high surface area, MSNs as drug delivery systems (DDSs) show significant advantages over traditional drug nanocarriers. In this review, we overview the recent progress in the synthesis of MSNs for drug delivery applications. First, we provide an overview of synthesis strategies for fabricating ordered MSNs and hollow/rattle‐type MSNs. Then, the in vitro and in vivo biocompatibility and biotranslocation of MSNs are discussed in relation to their chemophysical properties including particle size, surface properties, shape, and structure. The review also highlights the significant achievements in drug delivery using mesoporous silica nanoparticles and their multifunctional counterparts as drug carriers. In particular, the biological barriers for nano‐based targeted cancer therapy and MSN‐based targeting strategies are discussed. We conclude with our personal perspectives on the directions in which future work in this field might be focused.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号