首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Additive manufacturing (AM) of ceramics is relatively more challenging with respect to polymers and metals, owing to their high melting temperatures and inherent brittleness. Thus, this review aims to provide a comprehensive survey of recent AM technologies successfully employed to produce net shape ceramic components. In recent years, several techniques have been developed and the latest progress in this field are highlighted, as well as the current challenges in the complex shaped ceramic parts production via AM technologies. The state of the art concerning the various 3D printing processes applied to the fabrication of ceramic components is discussed with, for each method, the presentation of its advantages, disadvantages, and possible applications. The potential of AM for producing complex shape ceramic components and the challenges to overcome are discussed as well.  相似文献   

2.
The possibility of additive manufacturing of ceramics has been reported widely in scientific literature. This study investigates the potential of direct inkjet printing or material jetting of 3Y-TZP ceramics by assessing the microstructure and mechanical properties of the sintered printed parts. The technique allows to print in layers of 10.5 μm, with an as-printed green density of 58 % and nearly fully sintered density of 6.03 ± 0.1 g/cm3 (99.7 % TD). The dimensions of the green and sintered parts were highly accurate but showed an anisotropic roughness in function of the building direction, mainly due to the support structures. The biaxial bending and 4-point bending strength of the sintered material was found to be substantially higher in the XY direction than in the building (Z) direction. SEM and X-Ray computed tomography revealed the presence of delamination cracks, agglomerates and spherical pores, which were identified as fracture origins on fractured surfaces.  相似文献   

3.
Silicon nitride (Si3N4) ceramic has been widely applied in various engineering fields. The emergence of additive manufacturing (AM) technologies provides an innovative approach for the fabrication of complex-shaped Si3N4 ceramic components. This article systematically reviews the advances of the AM of Si3N4 ceramic in recent years and forecasts the potential perspectives in this field. This review aims to motivate future research and development for the AM of Si3N4 ceramic.  相似文献   

4.
Additive manufacturing techniques offer the potential to fabricate organized tissue constructs to repair or replace damaged or diseased human tissues and organs. Using these techniques, spatial variations of cells along multiple axes with high geometric complexity in combination with different biomaterials can be generated. The level of control offered by these computer-controlled technologies to design and fabricate tissues will accelerate our understanding of the governing factors of tissue formation and function. Moreover, it will provide a valuable tool to study the effect of anatomy on graft performance. In this review, we discuss the rationale for engineering tissues and organs by combining computer-aided design with additive manufacturing technologies that encompass the simultaneous deposition of cells and materials. Current strategies are presented, particularly with respect to limitations due to the lack of suitable polymers, and requirements to move the current concepts to practical application.  相似文献   

5.
In this paper, SiCO microsphere/polyvinyl silicon acetylene slurry was prepared for the first time with low viscosity and good rheological behavior. The dispersion of microspheres in the precursor resin and the UV-light curing performance of the slurry were investigated. After pyrolysis at 1000 °C, the properties of the three-dimensional (3D) printed samples were characterized. The introduction of SiCO microspheres reduced the specimen shrinkage of the pure precursor photosensitive resin used for additive manufacturing and improved their mechanical properties. When the addition of SiCO powder increased from 0 wt% to 10 wt%, the linear shrinkage decreased from 33 % to 26 %, and the flexural strength increased from 43.9 MPa to 79.8 MPa. This study realizes the preparation of Si-based composite materials through low-cost LCD additive manufacturing technology. It confirms the great potential of low-cost light-curing additive manufacturing to fabricate complex functional composite ceramic materials.  相似文献   

6.
The joint stock company AO Kerammash — VNIIEK can help a wide circle of operating and newly organized enterprises that produce ceramic articles. The company is ready for cooperation with manufacturers who would like to market their products and find a reliable long-term partner.Translated from Ogneupory, No. 9, pp. 35 – 37, September, 1994.  相似文献   

7.
《Ceramics International》2022,48(9):12721-12728
Recent surge in additive manufacturing efforts demonstrate stereolithography as a promising technique for fabricating glass materials due to the high speed and scalability of the process. However, little efforts have been devoted to manufacture borosilicate glass by the stereolithographic process. One of the challenges is that its relatively low softening temperatures could interfere with the thermal post-printing process and introduce poor fidelity and structure instability. Here, we report on the first demonstration of stereolithographic manufacturing of cerium-doped (Ce-doped) (<10%) and undoped borosilicate glass which was enabled by a multi-step post thermal processing. The optical properties of the printed glass depend on thermal processing parameters (temperature, time, and environment) and can be readily tuned and optimized for a wide range of applications. The printed amorphous glass shows good structural stability with band gap of 3 eV, Urbach energy of 0.75 eV and refractive index of 2.14 for 8% Ce-doped glass, respectively. These results indicate Ce-doped glass fabricated by stereolithography is suitable for scintillator applications and that additive manufacturing could be promising for borosilicate glass fabrication.  相似文献   

8.
Conversion of inorganic-organic frameworks (ceramic precursors and ceramic-polymer mixtures) into solid mass ceramic structures based on photopolymerization pro...  相似文献   

9.
This study presents a fabrication method and identifies processing bounds for additively manufacturing (AM) ceramic matrix composites (CMCs), comprising a silicon oxycarbide (SiOC) ceramic matrix. A digital light projection printer was used to photopolymerize a siloxane-based preceramic resin containing inert ceramic reinforcement. A subsequent pyrolysis converted the preceramic polymer to SiOC. Particle reinforcements of 0 to 40% by volume in the green state were uniformly dispersed in the printed samples to study their effects on pyrolysis mass loss and shrinkage, and CMC notch sensitivity and strength. Both particle and whisker reinforcements toughened the glassy SiOC matrix (1 MPa m1/2), reaching values >3 MPa m1/2. Bending strengths of >300 MPa (>150 MPa (g cm−3)−1) and a Weibull modulus of 10 were measured on AM samples without surface finish. We identified two pore formation mechanisms that placed processing bounds on sample size and reinforcement volume fraction. Methods for increasing these bounds are discussed. With properties commensurate to traditionally processed technical ceramics, the presented process allows for free-form fabrication of high-performance AM CMC components.  相似文献   

10.
郝国永  张莹莹  高磊  元科 《现代化工》2014,34(11):5-8,10
介绍了换热器制造工艺现状及不足之处,借鉴汽车、造船等行业先进生产技术、理论及未来装备质量控制的发展趋势,提出将制造精度体系运用到换热器设计、加工、装配中。通过制作三维管束工艺模型,介绍了三维工艺模型从建立模拟装配模型、虚拟装配到实物制造的过程。最后对换热器制造技术的进步革新做出展望。  相似文献   

11.
Additive manufacturing of lead-free piezoceramics is of great interest, given the large request of application-oriented designs with optimal performances and reduced material consumption. Binder Jetting (BJ) is an additive manufacturing technique potentially suited to the production of ceramic components, however the number of feasibility studies on BJ of piezoceramics is extremely limited and totally lacking in the case of sodium-potassium niobate (KNN). In this work, as-synthesised powders are employed in the BJ 3D printing process. Microstructural properties, such as porosity, grain size distributions, and phase composition are studied by SEM, XRD and MIP (Mercury Intrusion Porosimetry) and compared to die-pressed pellets. Analyses reveal considerable residual porosity (~40%) regardless of the printing parameters, with a weak preferential orientation parallel to the printing plane. The piezoelectric characterization demonstrates an outstanding d33 value of 80–90 pC N?1. Finally, Figures of Merits for the employment as porous piezoceramics in the direct mode are presented.  相似文献   

12.
The Ceramic On-Demand Extrusion (CODE) process has been recently proposed for additive manufacturing of dense, strong ceramic components via extrusion with uniform layered drying. This study focuses on enabling CODE to fabricate functionally graded ceramics. A controlled volumetric flowrate for each ceramic paste was used to achieve a gradient between alumina and zirconia. A dynamic mixer was built to mix constituent ceramic pastes homogeneously. Functionally graded alumina/zirconia samples were printed, sintered, and tested to examine the capability of CODE in fabricating functionally graded components. The desired and actual material compositions were compared using energy dispersive spectroscopy. Dimensions of sintered samples were evaluated to study the deformation of functionally graded components during drying and sintering. Vickers hardness was also measured at different locations, corresponding to different material compositions. Finally, a case study was conducted to demonstrate the capability of the proposed method to build functionally graded ceramics with complex geometries.  相似文献   

13.
Among engineering materials, ceramics are indispensable in energy applications such as batteries, capacitors, solar cells, smart glass, fuel cells and electrolyzers, nuclear power plants, thermoelectrics, thermoionics, carbon capture and storage, control of harmful emission from combustion engines, piezoelectrics, turbines and heat exchangers, among others. Advances in additive manufacturing (AM) offer new opportunities to fabricate these devices in geometries unachievable previously and may provide higher efficiencies and performance, all at lower costs. This article reviews the state of the art in ceramic materials for various energy applications. The focus of the review is on material selections, processing, and opportunities for AM technologies in energy related ceramic materials manufacturing. The aim of the article is to provide a roadmap for stakeholders such as industry, academia and funding agencies on research and development in additive manufacturing of ceramic materials toward more efficient, cost-effective, and reliable energy systems.  相似文献   

14.
Journal of Applied Electrochemistry - In this paper, additive layer-by-layer fabrication of a fully screen printed monolithic supercapacitor exhibiting performance comparable with supercapacitors...  相似文献   

15.
介绍了较为成熟的炭黑生产工艺,讨论了其各自在工业应用方面的前景,并对近年来涌现出的一些具有可应用前景的工艺方法进行了简要评述,同时也归纳了近几年炭黑生产工艺的进展表现。  相似文献   

16.
Aiming at optimizing the performance of porous ceramics through structural optimization, this work explored the properties variation achieved by designing different patterns in SiOC log-pile structures fabricated by direct ink writing. Specifically, we investigated the effect of filament diameter, spacing between filaments and angle of deflection between adjacent layers on the compression strength and gas permeability of these structures. Results confirm that mechanical performance could be tuned by designing the structures’ architectural features, such as the spacing between filaments and the angle of deflection between layers, leading to changes in the contact area of filaments belonging to adjacent layers. Permeability decreased with varying angle of deflection from 90 ° to 15 °, due to the higher tortuosity of the flow paths. This enables to optimize the strength and permeability of the structure without reducing the porosity of the component.  相似文献   

17.
Its transparency, esthetic appeal, chemical inertness, and electrical resistivity make glass an excellent candidate for small- and large-scale applications in the chemical, electronics, automotive, aerospace, and architectural industries. Additive manufacturing of glass has the potential to open new possibilities in design and reduce costs associated with manufacturing complex customized glass structures that are difficult to shape with traditional casting or subtractive methods. However, despite the significant progress in the additive manufacturing of metals, polymers, and ceramics, limited research has been undertaken on additive manufacturing of glass. In this study, a laser powder bed fusion method was developed for soda lime silica glass powder feedstock. Optimization of laser processing parameters was undertaken to define the processing window for creating three-dimensional multilayer structures. These findings enable the formation of complex glass structures with micro- or macroscale resolution. Our study supports laser powder bed fusion as a promising method for the additive manufacturing of glass and may guide the formation of a new generation of glass structures for a wide range of applications.  相似文献   

18.
Ceramic On-Demand Extrusion (CODE) process has been recently proposed for additive manufacturing of strong ceramic components via extrusion. This paper focuses on fabricating 3 mol% yttria-stabilized zirconia (3YSZ) components using CODE process, and enabling CODE to produce parts with support structures. A colloidal suspension of 3YSZ was developed and deposited through the main nozzle, and an organic feedstock was developed and deposited by means of another nozzle to fabricate supports. After printing and drying of raw parts, supports were removed by increasing the temperature and parts were then sintered to near theoretical (~99%) density. The maximum overhang angle that could be built with no support was also found out to be approximately 60 degrees. Three organic support materials, that is, polycaprolactone (PCL), silicone, and petrolatum were prepared and tested. PCL and petrolatum were identified as feasible support materials. Specimens were fabricated to validate the efficiency of the support materials and to evaluate CODE's capability for building parts with complex geometry. The microstructures of these parts were also analyzed via scanning electron microscopy.  相似文献   

19.
Porous silicon oxycarbide (SiOC) is emerging as a much superior ultrahigh surface area material that can be stable up to high temperatures with great tailorability through composition and additive modifications. In this study, bulk SiOCs were fabricated from a base polysiloxane (PSO) system by using different organic additives and pyrolysis atmospheres followed by hydrofluoric acid (HF) etching. The additives modify the microstructural evolution by influencing the SiO2 nanodomain formation. The SiOC ceramics contain significantly less SiC and more SiO2 with Ar + H2O atmosphere pyrolysis compared to Ar atmosphere pyrolysis. Water vapor injection during pyrolysis also causes a drastic increase in specific surface areas. The addition of 10 wt% tetraethyl orthosilicate (TEOS) with Ar + H2O pyrolysis produces a specific surface area of 1953.94 m2/g, compared to 880.09 m2/g for the base PSO pyrolyzed in Ar. The fundamental processes for the composition and phase evolutions are discussed as a novel pathway to creating ultrahigh surface area materials. The ability to drastically increase the specific surface area through the use of pyrolysis atmosphere and organic additives presents a promising processing route for highly porous SiOC ceramics.  相似文献   

20.
The challenges of implementing biorefineries on a global scale include socioeconomic, financial, and technological constraints. In particular, the development of biorefineries is tightly linked to the continued availability of fermentation raw materials. These constraints can be relaxed by the use of diverse raw materials, while advances that confer higher flexibility would enable biotechnological plant managers to swiftly react to volatile markets. In conventional processes, Saccharomyces cerevisiae grows on a relatively limited range of substrates, and produces only a single product—ethanol. Given the observed maturity of the S. cerevisiae fermentation technology, alternatives to baker's yeast may be needed to tip the economic balance in favour of biotechnological ethanol. These alternative fermentation technologies may allow a greater diversity of substrates to be used to produce an individually tailored mix of ethanol and other chemicals. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号