首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repassivation behavior of type-312L stainless steel containing 6% of molybdenum was examined in NaCl solution using in situ micro-indentation technique, together with type-304 and 316L stainless steels. High stability of the passive film formed on the type-312L stainless steel was also examined by depth profiling analysis of passive films using glow discharge optical emission spectroscopy (GDOES). In 0.9 mol dm−3 NaCl solution at 296 K the type-304 and 316L stainless steels are passive only up to 0.3 V (SHE), above which pitting corrosion occurs. In contrast, no pitting corrosion occurs on type-312L stainless steel. Despite the significant difference of the pitting corrosion resistance, the repassivation kinetics of the three stainless steels, examined by micro-indentation at 0.3 V (SHE), is similar. The presence of molybdenum in the stainless steel does not influence the repassivation kinetics. The charge required to repassivate the ruptured type-312L stainless steel surface increases approximately linearly with the potential, even though the passivity-maintaining current increased markedly at potentials close to the transpassive region. Repassivation occurs without accompanying significant dissolution of steel, regardless of the stability of passive state. Depth profiling analyses of the passive films on the type-312L stainless steels formed at several potentials revealed that molybdenum species enrich in the outer layer of the passive film, below which chromium-enriched layer is present. The permeation of chloride ions may be impeded by the outer layer containing molybdate, enhancing the resistance against the localized corrosion of the type-312L stainless steel.  相似文献   

2.
Passivity of alloys containing corrosion-resistant elements were reviewed. Chromium and valve metals except aluminum form stable oxyhydroxide films even in aggressive hydrochloric acids. Molybdenum forms a passive MoO2 film in the active region of stainless steels and hence decreases the active dissolution current. In the passive region of transition metals and valve metals, molybdenum is generally in the transpassive state and dissolved. However, if the outer oxyhydroxide film is stable the inner MoO2 film is protected by the outer oxyhydroxide film and the MoO2 film acts as the effective barrier against diffusion of matters through the film. Thus the passive current density of 30Cr-2Mo ferritic stainless steel is more than two orders of magnitude lower than that of 30Cr steel without molybdenum in 1 M HCl.  相似文献   

3.
Thin oxide layers on 304L stainless steel were grown by thermal oxidation at 300 °C at different durations ranging from 2 to 4 h. The structural characterization of the oxide films was carried out by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical impedance spectroscopy was used to investigate the effects of exposure time and applied potential on the electronic properties of these films. Oxide films are described by a multilayer structure, with n-type iron oxide and oxyhydroxide in the outer layers and p-type chromium oxide in the inner layer. Doping densities evaluated from Mott-Schottky plots increased with the oxidation duration, with characteristics of highly disordered semiconductor.  相似文献   

4.
The electrochemical behaviour of passive films formed on one austenitic stainless steel (AISI 304) and one ferritic stainless steel (AISI 446) in solutions with pH between 0.6 and 8.4 was studied by capacitance measurements and photocurrent spectroscopy. Compositional characterization of the passive films was done by X-ray photoelectron spectroscopy. The capacitance increases with decreasing pH. Doping densities evaluated from Mott-Schottky plots are in the range 2-6 × 1020 cm−3 and increased with the pH in the neutral/alkaline range while in pH 0.6, values above 1021 cm−3 were found. The bandgap energy indicates two transitions, at 2.5-2.8 and 3.2 eV. The analytical data reveal that, as the pH increased, the films become enriched in Fe(II) and Fe(III), whereas the Cr(III) gradually decreases. The films formed at very low pH had a behaviour that contrasts with that of the films formed in the neutral/alkaline media. The films are described by a bilayer structure, with hydroxides in the outer layer and a spinel type oxide in the inner layer.  相似文献   

5.
The passivation behaviour of a super duplex stainless steel has been investigated in a boric-borate buffer solution with and without chloride additions, at different temperatures, by means of potentiodynamic and potentiostatic techniques. X-ray photoelectron spectroscopy was used to detect surface compositional changes of anodic passive films formed as a function of electrode potential and temperature. The resulting passive films were all chromium enriched with respect to the bulk composition, and their thickness and ratio were found to vary significantly. In particular, the films formed in the passive domain were more enriched with chromium compared with those grown in the secondary passive region. At a constant potential the temperature increase produced a reduction in the chromium content of the film. These findings can be explained by the different ionic mobilities and dissolution rates at the film/solution and film/alloy interfaces. Pitting corrosion was observed only in the transpassive zone. A temperature increase from 23 to 60 °C did not produce a decrease in the pitting potential. This behaviour can be explained by the parallel action of two different phenomena, the change in the composition and structure of the passive film and the velocity increase in the process, which yield localized rupture of the passivity by the nucleation and growth of pits in connection with chromium depletion at high potentials.  相似文献   

6.
The passivity of AISI 304L and AISI 316L stainless steels in a borate buffer solution, with and without the addition of chloride ions, was studied using cyclic voltammetry and potentiodynamic measurements. The passive layers formed by electrochemical oxidation at different passivation potentials on both the stainless steels were studied by X-ray photoelectron spectroscopy, their compositions were analysed as a function of depth, and the cationic fraction of the passive film was determined. The passive films established on the two stainless steels in the borate buffer solution at pH = 9.3 contained the oxides of two main elements, i.e., Fe and Cr. The oxides of the alloying elements Ni and, optionally, Mo, also contribute to the passive layer. In the presence of chloride ions a strong chromium enrichment was observed in the passive layers.  相似文献   

7.
A.A. Hermas 《Corrosion Science》2008,50(9):2498-2505
Improvement of the passivation behavior of Type 304 austenitic stainless steel (SS) by coating with conductive polymers (CPs), like polyaniline (PANI) and poly(o-phenylenediamine) (PoPD), followed by exposure in an acid solution has been demonstrated. The passive films formed on SSs (after peeling off the polymer layer) are compared with those formed during anodic polarization under the same exposure condition. The passive films beneath the CPs are thicker and less hydrated than those formed on uncoated stainless steel. The polymer layer enhances the enrichment of chromium and nickel in the entire passive oxide, forming a more protective film than that formed during anodic polarization. The elemental distribution within the passive film is different in the two modes of passivation. The type of the polymer influences on the composition of the passive film. The best passivation is obtained by PoPD, with the passive film resulting in significant resistance of the SS to pitting corrosion in the 3% NaCl solution. The oxide film of this steel is characterized, in its inner and outer layers, by the highest ratio of Cr(OH)3/Cr2O3 and the lowest content of iron species.  相似文献   

8.
Photocurrent and capacitance measurements of semiconductor passive films formed on metals and alloys can be used to study the electronic properties and reveal indirect information about structure and composition. The current work used these techniques to investigate the electronic properties of the passive films formed on three austenitic stainless steels, types 304L, 316L and 254SMO, in borate. Evidence was found for the existence of a large number of localised mid bandgap states, consistent with amorphous oxides. However, the flat-band potentials of the austenitic stainless steel passive films were found to be independent of both composition and measuring frequency. The most credible explanation for the bandgap values determined from photocurrent measurements is that the passive films are formed as dual layers, iron oxide outer layer and chromium oxide inner layer. This model does not need to evoke the potential dependent bandgaps used by previous authors.  相似文献   

9.
The surface films formed on type 316LN stainless steels (SS) with different nitrogen contents, during potentiodynamic polarization in acidified 1 M NaCl solution, were characterized by Laser Raman Spectroscopy (LRS). LRS confirmed the presence of oxides and oxychlorides of iron and chromium, hydrated chlorides and nitrates in the film. Raman mapping showed increasing nitrate content in the film with increasing nitrogen content. The film on the uncorroded material showed the presence of chromium and molybdenum oxides. The improvement in pitting corrosion resistance of type 316LN SS with increasing nitrogen content was attributed to increased amount of nitrates in the passive film.  相似文献   

10.
Titanium dioxide (TiO2) films have been deposited onto stainless steel substrates using atomic layer deposition (ALD) technique. Composition analysis shows that the films shield the substrates entirely. The TiO2 films are amorphous in structure as characterized by X-ray diffraction. The electrochemical measurements show that the equilibrium corrosion potential positively shifts from − 0.96 eV for bare stainless steel to − 0.63 eV for TiO2 coated stainless steel, and the corrosion current density decreases from 7.0 × 10− 7 A/cm2 to 6.3 × 10− 8 A/cm2. The corrosion resistance obtained by fitting the impedance spectra also reveals that the TiO2 films provide good protection for stainless steel against corrosion in sodium chloride solution. The above results indicate that TiO2 films deposited by ALD are effective in protecting stainless steel from corrosion.  相似文献   

11.
C.X Li  T Bell 《Corrosion Science》2004,46(6):1527-1547
AISI 316 austenitic stainless steel has been plasma nitrided using the active screen plasma nitriding (ASPN) technique. Corrosion properties of the untreated and AS plasma nitrided 316 steel have been evaluated using various techniques, including qualitative evaluation after etching in 50%HCl + 25%HNO3 + 25%H2O, weight loss measurement after immersion in 10% HCl, and anodic polarisation tests in 3.5% NaCl solution. The results showed that the untreated 316 stainless steel suffered severe localised pitting and crevice corrosion under the testing conditions. AS plasma nitriding at low temperature (420 °C) produced a single phase nitrided layer of nitrogen expanded austenite (S-phase), which considerably improved the corrosion properties of the 316 austenitic stainless steel. In contrast, AS plasma nitriding at a high temperature (500 °C) resulted in chromium nitride precipitation so that the bulk of the nitrided case had very poor corrosion resistance. However, a thin deposition layer on top of the nitrided case, which seems to be unique to AS plasma nitriding, could have alleviated the corrosion attack of the higher temperature nitrided 316 steel.  相似文献   

12.
A high nitrogen face-centered-cubic phase (γN) was obtained on the nitrided surface of 1Cr18Ni9Ti austenitic stainless steel by plasma-based low-energy nitrogen ion implantation. No pitting corrosion for the γN phase was confirmed by electrochemical polarization measurement in 3% NaCl solution. The protective passive film with a duplex character, iron hydroxide/oxides in the outer region and chromium hydroxide/oxides and iron oxides accompanying chromium and iron nitrides in the inner region, was by 2-3 times thicker than that of original stainless steel. The thick iron hydroxide/oxides region formed on the chromium hydroxide/oxides region due to the increase of alkalinity in the solution, leading to barrier against penetration of localized attack of the aggressive ions. The equivalent general corrosion resistance for the γN phase was observed in 0.5 mol/l H2SO4 solution relative to the original stainless steel. The passive film formed on the γN phase in 0.5 mol/l H2SO4 solution was similar to that of original stainless steel. The different role of nitrogen was proposed in pitting corrosion resistance and general corrosion resistance of austenitic stainless steel.  相似文献   

13.
C.T. Liu 《Corrosion Science》2007,49(5):2198-2209
The potentiodynamic polarization measurement of 254SMO stainless steel (UNS 31254) was conducted in 3.5% NaCl solutions with pH ranging from 0.1 to 5. The results indicated that this stainless steel offered excellent pitting corrosion resistance in corrosive environments. Further, it also exhibited various features on the polarization curves in different pH solutions. The electrochemical constant-potential passivation treatment performed at different pH followed by XPS analysis revealed that the primary constituents of the outermost layer of the passive films formed in the weak (pH 5) and strong (pH 0.8) acid solutions are iron oxides and Cr2O3 and Cr(OH)3, respectively. Molybdenum oxides, primarily in the six-valence state, existed in the outermost layer of the passive film. Only very weak signals corresponding to that of nickel oxides were detected in the film formed in the weak acid (pH 5) solution. The ICP-MS analyses indicated selective dissolution of a significant amount of Fe and a few Mo and Ni ions during the passivation treatment in the strong acid (pH 0.8) solution. No Cr dissolution was observed; this indicated that the Cr in the film is relatively stable. XPS depth profiling results showed that a similar bilayer-structured film was formed in both the solutions (pH 0.8 and 5); the outer layer of this film is primarily composed of Cr(OH)3 and Mo(VI), and the inner layer, Cr2O3 and Mo(IV). The results of the examinations of passive film formations and dissolution by XPS and ICP-MS were consistent with the polarization curves.  相似文献   

14.
Characteristics of the oxide films formed on 304 stainless steel immersed in 290 °C oxygenated water for different duration time were examined. The results show that the oxide film is mainly composed of outer irregularly shaped α-(Fe, Cr)2O3 and minor spinel in the inner layer. The morphology and chemical composition of the oxide film evolve with increasing immersion time. The surface layer is first enriched in Cr and then enriched in Fe. It is proposed that the oxide nucleated by solid-state reactions with the selective dissolution of Fe and Ni, and grew up through precipitation of extraneous metallic ions from solution.  相似文献   

15.
X-ray photo-electron spectroscopy has been used to investigate the correlation between composition of surface films and the beneficial effects of molybdenum addition to high purity, 30Cr ferritic stainless steels in improving the corrosion resistance properties in HCI. It has been found that the passive films formed consist mainly of hydrated chromium oxy-hydroxide and the composition of the films on 30Cr and 30Cr-2Mo stainless steels is essentially the same, except for the existence of a small amount of hexavalent molybdenum on the latter steel. The surface film formed in the active region contains a large amount of hexavalent molybdenum. The beneficial effects of molybdenum have been interpreted as follows: molybdenum eliminates the active surface sites through the formation of molybdenum oxy-hydroxide or molybdate on these site, on which it is difficult to form the stable passive film. This leads to the appearance of a homogeneous steel surface and to the formation of a homogeneous passive film.  相似文献   

16.
The composition and structure of passive film formed on 316L SS immersed in an anhydrous methanol solution (water content < 0.05 wt%) containing 0.42 wt% LiCl at 323-473 K were investigated by X-ray photoelectron spectroscopy (XPS), and compared with those of film formed in an aqueous solution. The passive film formed in the methanol solution was mainly composed of Fe and Cr oxides, and it possessed a double-layered structure consisting of an Fe oxide-rich outer layer and a Cr oxide-rich inner layer. Dissolution of the Fe-rich layer and densification of the Cr-rich inner layer were observed, especially at high temperatures. However, these were suppressed in an aerated methanol solution at 423 K or below, probably due to the barrier effect of adsorbed oxygen. No Ni compound contributed to composing the passive film, even at higher temperatures. The ratio of OH to O2− was small and decreased with an increase in temperature (the presence of oxygen suppressed the decrease, especially at 423 K or below). The chloride ions were concentrated in the Fe-rich outer layer, and they penetrated more deeply than that in the aqueous solution into the passive film formed in the methanol solution.  相似文献   

17.
The chemical composition and the semiconducting properties of passive films formed on nickel based alloy (Alloy 600) in acidic sulphate solution, pH 2.0 at room temperature were studied using Auger analysis, voltammetric techniques and the Mott-Schottky approach. The results obtained revealed that the presence of both chromium and mixed nickel-iron oxides in the films leads to the development of a p-n heterojunction, which controls their electronic structure, similarly manner to the case of stainless steels and Alloy 600 in borate buffer solution. This behavior has been interpreted as representing of an oxide system, which has a duplex character, with an inner p-type semiconducting region, mainly formed by chromium oxide and an outer n-type semiconducting region, containing iron oxide. It could also be observed that the nickel oxide present in the films acts as a barrier layer conferring improved protection.  相似文献   

18.
Semiconductor properties of passive films formed on the Fe-18Cr alloy in a borate buffer solution (pH = 8.4) and 0.1 M H2SO4 solution were examined using a photoelectrochemical spectroscopy and an electrochemical impedance spectroscopy. Photo current reveals two photo action spectra that derived from outer hydroxide and inner oxide layers. A typical n-type semiconductor behaviour is observed by both photo current and impedance for the passive films formed in the borate buffer solution. On the other hand, a negative photo current generated, the absolute value of which decreased as applied potential increased in the sulfuric acid solution. This indicates that the passive film behaves as a p-type semiconductor. However, Mott-Schottky plot revealed the typical n-type semiconductor property. It is concluded that the passive film on the Fe-18Cr alloy formed in the borate buffer solution is composed of both n-type outer hydroxide and inner oxide layers. On the other hand, the passive film of the Fe-18Cr alloy in the sulphuric acid consists of p-type oxide and n-type hydroxide layers. The behaviour of passive film growth and corrosion was discussed in terms of the electronic structure in the passive film.  相似文献   

19.
Bi-layered polypyrrole (PPy) coating was investigated for corrosion prevention of steels. The PPy coating consisted of the inner layer doped with PMo12 (PMo12) and ions and the outer layer doped with naphthalenedisulfonate (NDS) ions. PMo12 ions doped in the inner layer make the passive oxide film on steel stabilized and the outer layer doped with large organic ions of NDS restricts decomposition and release of PMo12 ions in the inner layer. Corrosion tests were made in 3.5% NaCl aqueous solution for the steels covered by the single PPy-PMo12, single PPy-NDS, and bi-layered PPy-PMo12/PPy-NDS coatings. The single PPy-PMo12 and PPy-NDS coatings maintained the steel in passive state for 34 h and 24 h, respectively. The bi-layered coating kept the steel in passive state and prevented corrosion of the steels for the longer time period.  相似文献   

20.
Electrochemical evolution of the interface formed by carbon steel exposed to artificial seawater with nutrients in the presence and absence of mixed cultures that contain sulfate-reducing bacteria (SRB) is characterized by electrochemical impedance spectroscopy (EIS). The artificial seawater in sterile conditions progressively covered the surface of the steel sample with two different layers after 30 days of exposure. An outer layer is formed by a mixture of chlorides and phosphorus-based iron corrosion products with organic compounds from the culture media, and an inner layer is formed by corrosion products mixture constituted mainly by phosphorus-base products. Alternatively, under biotic conditions there was one heterogeneous layer composed by a mixture of phosphorous and sulfur-based corrosion products and biofilm. Three time constants were observed with EIS for sterile conditions. At low frequencies one constant is associated with the charge transfer resistance related to the iron dissolution reaction and inversely proportional to the active area; the porous resistance magnitudes at medium frequencies characterized the physicochemical properties of the inner layer, and high frequency described the electrical properties of the outer mixture layer. Low carbon steel in the presence of SRB (halophilic hydrogenotrophic) showed the impedance distribution after the formation of a corrosion product thick black layer mixed with organic composites and bio-entities. The SRB-biofilm enhanced the corrosion rate and influenced the appearance of diffusion controlled mechanism process. Electrical passive analogs in terms of constant phase elements characterized the evolution of the cover films formed and the impedance of the layers with time. The mechanisms are characterized based on the impedance response for three time constants in the absence of SRB and one time constant with a finite Warburg element when SRB are present in the electrolyte. The validation of the theoretical approximation with electrical analogs was in good agreement with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号