首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The studies on chrome-plating from sulfate–oxalate Cr(III) baths are generalized. It is shown that the metal is deposited from the mentioned baths at a current efficiency over 40% and forms deposits of any thickness. Chrome-plating may be carried out in the cells with undivided cathodic and anodic compartments, which reduces the current efficiency to 25–30%. The reflectivity and color of the deposits do not differ from those of the deposits from standard chrome-plating baths based on Cr(VI). Special attention is paid to the studies of the corrosion and electrochemical behavior of deposited layers. Steady-state polarization curves in a 0.5 M H2SO4indicate that the studied chromium deposits exhibit no active-dissolution range. The free corrosion–potential is shifted in the positive direction compared with coatings deposited from standard chrome-plating baths and falls into the passivity range. According to XPS method, the passive film is about several nanometers thick and, along with oxide compounds of chromium, includes its carbides formed during the electroplating.  相似文献   

2.
Corrosion of pure metals Fe, Ni, Co, Cr in molten glass was studied at 1050 °C by electrochemical techniques and thickness losses measurements. These two techniques are in good agreement. The electrochemical apparatus was used to determine the formal potential of some redox couples, to identify the corrosion reactions and to evaluate the corrosion rates.Among tested metals, only chromium is a passivable material. The passivation is due to the formation of a chromium oxide (Cr2O3) protective layer at the glass/metal interface. Then superalloys used in molten glass must contain a high chromium level to resist to corrosion.  相似文献   

3.
The main purpose of this paper is to develop a dynamic and non-destructive method to quantify and correlate the microstructure changes of the Cr(III) layer by electrochemical techniques. The open circuit potential (OCP) analysis reveals the nucleation growth mechanisms of the Cr(III) layer and the dissolution phenomena of Zn. In addition, the effects of immersion time to the corrosion behavior of Cr(III)-based conversion coatings (TCCCs) on electrogalvanized steel were studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in a 3.5% NaCl solution. Furthermore, surface morphology of the Cr(III) coatings under different immersion times was examined using both a scanning electron microscope and an atomic force microscope.From the potentiodynamic polarization experiment, the corrosion current density (Icorr) of the specimen with immersion time of 60 s was found appreciably small, representing the inheritance of the best anticorrosion performance. Additionally, the corrosion resistance of the Cr(III)-coating for the specimens obtained between 30 s and 60 s is two order higher than those of the untreated specimen from the EIS experiments. Results show that the quality of Cr(III)-based conversion coatings was strongly influenced by the immersion time of Cr(III) solution. And the optimal immersion time is recommended in the range of 30–60 s.  相似文献   

4.
The aim of this work is to study an alternative plating process to obtain chromium coatings through electrodeposition from baths containing trivalent chromium, as aqueous solutions of Cr (III) are significantly less dangerous, in terms of human health and environmental impact, as compared to the traditional Cr (VI) baths employed for this purpose. In order to overcome problems regarding the reduction of Cr (III) in aqueous solution, two approaches were followed: i) the possibility of co-depositing chromium along with a second metal, which could help the process of discharge of Cr3+ on the substrate; ii) the use of a specific ligand for the Cr3+ ion, which can generate easily reducible complexes at the metal-solution interphase. Both approaches led to interesting results: in particular, the co-deposition enabled us to obtain NiCr alloy with a high percentage of chromium, and the deposition using specific complexing agents allowed optimal bath compositions to be developed both for decorative and hard chromium plating.  相似文献   

5.
《金属精饰学会汇刊》2013,91(3):145-148
Abstract

Zinc–nickel alloy was electrodeposited on stainless steel using pulse current deposition (PED) from a chloride–sulphate bath. Duty cycles were varied between 10 and 80% and frequency was changed from 10 to 100 Hz. The deposit characteristics were analysed using SEM, XRD and AFM and the results are presented in this paper. The corrosion resistance of zinc–nickel alloy deposited from direct current deposition (DCD) has been compared with that of the deposit obtained by pulse current using the electrochemical impedance spectroscopy method.  相似文献   

6.
Thermogravimetric (TG) experiments have been carried out to study the kinetics of hot corrosion of Fe, Cr and Ni, covered by a molten KCl-ZnCl2 mixture of a composition close to the eutectic (50 mol% KCl-50 mol% ZnCl2). Furthermore binary and ternary phase diagrams were calculated in order to describe the corrosion process. The tests were conducted at a temperature of 320 °C in an atmosphere consisting of argon and oxygen. For iron different stages are observed in a TG curve. They can be attributed to the different reaction steps of iron chloride formation (incubation phase), oxide precipitation (linear stage) and scale formation (parabolic or logarithmic stage). Based on these observations a model, described by Spiegel [A. Spiegel, Molten Salt Forum 7 (2003) 253], is confirmed. For Cr and Ni these stages are not observed. At 8 vol% O2 only slight oxidation of Cr and Ni was observed accompanied by evaporation of the salt deposit. At 16 vol% O2 the rate of oxidation increases and the experiments yield a curve that is either parabolic or logarithmic for both Ni and Cr. As a result it is shown that the solubility of iron chloride in the KCl-ZnCl2 melt is higher than the solubility of nickel chloride and chromium (III) chloride in the KCl-ZnCl2 melt. This enables a higher diffusibility of iron chloride to the upper region of the melt where a higher oxygen partial pressure (p(O2)) is present leading to a higher oxidation rate of iron.  相似文献   

7.
Galvanized steel sheets pre-treated with a new product and then painted with a polyester topcoat without primer were submitted to Prohesion G-85 test (PT) and to outdoor marine exposure test (OT). The new product that replaces standard inorganic chromium pre-treatment + primer consists in a water based resin which applied directly to the properly cleaned metal substrate is then dried in place. This scheme sets aside Cr(VI) compounds which cause severe damages on human health.Goethite, lepidocrocite, magnetite, akaganeite and silicates were found in OT samples coinciding with the usual corrosion products obtained for conventional painting schemes (with Cr(VI)).Surprisingly in PT samples greigite was detected, showing that the new painting scheme is susceptible to microbiological corrosion. Goethite, lepidocrocite, pyrite, magnetite and akaganeite were also found.This study allows the conclusion that in the PT the corrosion mechanism is different from that in the OT for the analyzed samples and should not be used to predict the performance of this kind of outdoor exposed materials.  相似文献   

8.
The oxidation of hydrosulphate green rust (GR2(SO42−)) suspension containing different chromium ion species was investigated by X-ray diffraction, X-ray absorption spectroscopy and transmission electron microscopy. The pH, oxidation-reduction potential and amount of dissolved oxygen in aqueous solutions were measured during the reactions. The results show that the addition of Cr(III)2(SO4)3 solution suppresses the transformation of GR2(SO42−) into iron oxyhydroxides and oxides in aqueous solution, while the addition of Na2Cr(VI)O4 solution promotes the transformation of GR2(SO42−) in which Cr(VI) is reduced to Cr(III); α-FeOOH particles were refined by the addition of the chromium ions.  相似文献   

9.
The influence of the components of an acidic solution: Cr(III) nitrate-malonic acid-Co(II) salt and treatment conditions on zinc dissolution and formation of Chromate films as well as on their decorative and protective properties have been studied using the analytical, XPS, structural and accelerated corrosion test methods. An organic acid is the main component, which has an essential influence on zinc dissolution and formation of Chromate films as well as their decorative and protective properties. The influence of organic acid is directly related with the state of the Cr3+ ions in chromating solution. When the Cr3+ ions are in the form of hexaaquaions, the organic acid increases the quantities of the zinc dissolved and the Cr(III) deposited on the zinc surface (especially at 60°C). It also predetermines the formation of a thick, porous Chromate film with large cracks at 60°C. Its decorative and protective properties are rather poor. When Cr3+ ions are in the form of a complex with organic acid, the quantities of the zinc dissolved and the Cr(III) deposited on the zinc surface significantly decrease and thinner Chromate films with an even surface, good decorative appearance and high corrosion resistance are formed Decorative blue-bright Cr(VI)-free films with a slight iridescent tint, obtained in solution, containing Cr(III) nitrate (0.2), malonic acid (0.3) and Co(II) nitrate (0.02) mol dm?3, at p H 1.6-2.0 at room temperature over 30–60 s, possess corrosion resistance (192–240 h in a salt spray chamber) similar to that of iridescent Chromate films, obtained in acidic Cr(VI) solution.  相似文献   

10.
This study was intended to investigate the properties of Cr/Cr bilayer coatings. These coatings were deposited on a copper substrate by the DC electrodeposition method from Cr(III) sulphate baths with additions of formate-urea or glycine as complexing agents. Examination of the surface morphology of Cr coatings with SEM has shown that both single and bilayer Cr coatings obtained in the Cr(III) bath with formate-urea, and those obtained in the Cr(III) bath with glycine are cracked. It has been determined that the surface microhardness (HV) of bilayer Cr coatings obtained in the Cr(III) bath with glycine is higher compared with that of single-layer Cr coatings. Wear testing of the coatings was undertaken against an Al2O3 ball counterface (6?mm diameter) at 1N load. The results indicate that the friction coefficients (COF) of bilayer Cr/Cr coatings obtained in the Cr(III) bath with formate-urea increased from 0.2 to 0.5 compared with that of single-layer Cr coatings, while their wear resistance deteriorated. However, bilayer Cr/Cr coatings obtained in the Cr(III) bath with glycine exhibit wear resistance close to that of single coatings with COF equal to 0.05.  相似文献   

11.
The adsorption properties of XSD-296 for Cr(Ⅵ) were studied by using chemical analysis and infrared spectrometry. Experimental results show that XSD-296 resin has a good adsorption ability for Cr(Ⅵ) at pH=2.6 in the HAc-NaAc medium. The statically saturated adsorption capacity is 235 mg/g resin. The apparent activation energy of adsorption reaction, Ea, is 16.73 kJ/mol, and the thermodynamic parameters are △H=11.62 kJ/mol, △G298 K=-4.13 kJ/mol. The adsorption behavior of resin for Cr(Ⅵ) is in accordance with Freundlich adsorption isotherm. Cr(Ⅵ ) adsorbed on resin can be eluted by 5%NaCl-5%NaOH or 5%NH4Cl-5%NH3-H2O quantitatively. Infrared spectra and adsorption mechanism show that the functional group of resin coordinates with Cr(Ⅵ) to form co-ordination compound. The coordination molar ratio of the functional group of resin to Cr(Ⅵ) is 1:1.  相似文献   

12.
《金属精饰学会汇刊》2013,91(6):308-314
Abstract

Cr–WC–SiC coatings were deposited from Cr(VI) baths containing a mixture of both WC and SiC particles in the ratio of 1 : 1. X-ray photoelectron spectroscopy data indicated relatively low percentages of both WC (about 2˙68–2˙85 at.-% of W4f) and SiC (0˙16–0˙45 at.-% of Si2p) particles in the top layers of the Cr–WC–SiC coatings. However, these particles have some effect on the morphology and corrosion properties of the Cr coating. Protective properties of the coatings obtained were studied at different exposure times of samples in sulphate solution (pH=2˙8), using the electrochemical impedance spectroscopy method (EIS). Equivalent circuits, based on the electrophysical model describing the electrochemical corrosion at the coated surface, were proposed. The simulation of EIS data with the proposed equivalent circuit models made it possible to reveal the details of the corrosion processes occurring at coated systems (steel/Cr–WC–SiC coatings) immersed in the sulphate solution. Based on EIS data, diffusion in the coating was found to be a significantly controlling factor in the corrosion process for the system under investigation. The electrochemical impedance spectroscopy tests indicated a better corrosion resistance of Cr–WC–SiC coating than that of Cr. Analysis of the EIS data suggests that the enhanced corrosion resistance of Cr–WC–SiC coating was due to the microstructural features of these coatings, presumably containing smaller pores than Cr coating.  相似文献   

13.
The carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water is studied by potentiodynamic curve and electrochemical impedance spectroscopy (EIS); the micro-structure and composition of the corrosion scale formed at high-temperature and high-pressure are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that 13Cr stainless steel is in passive state in the stratum water, the passive current density increases and the passive potential region decreases with increasing temperature. The corrosion scale formed at high-temperature and high-pressure is mainly composed of iron/chromium oxides and a little amount of FeCO3.  相似文献   

14.
Kinetics and mechanism of the chromium electrodeposition process in methanesulfonate and sulfate solutions of Cr(III) ions have been investigated. The electroreduction of Cr(III) complex ions is shown to proceed stepwise with the formation of relatively stable intermediates—Cr(II) compounds. Chromium is established to be deposited via the discharge of Cr(II) hydroxocomplexes in these electrochemical systems. Some differences in electrodeposition behavior of methanesulfonate and sulfate trivalent chromium electrolytes are associated with the differences in their buffering capacity.  相似文献   

15.
In this study, Cr(N,O)/CrN double-layered coatings were synthesized using the cathodic arc deposition (CAD) process. CrN film was first deposited onto a substrate as an interlayer to ensure better adhesion, and Cr(N,O) film was subsequently deposited on top of the CrN layer as the surface layer. Variation in the Cr(N,O) coating composition was achieved through changing the O2/N2 flow ratio during the last stage of processing. Phase structure, chemical composition, and morphology of the resulting coatings were analyzed and observed using the X-ray diffractometer, Auger electron spectrometer and SEM. In addition, oxidation behavior of the coatings was investigated using TGA/DTA methods. The tests were carried out by increasing temperature up to 1000 °C in ambient air. With the introduction of oxygen gas during the CAD process, a superficial layer was produced in the Cr(N,O) constituent containing CrN and Cr2O3 phases. The formation of the oxide phase attributed to the reaction of chromium and oxygen was more favorable than that of chromium and nitrogen. The results also showed that Cr(N,O)/CrN double-layered coatings exhibited superior oxidation resistance at elevated temperature than that of CrN single-layer coated specimen (870 °C vs. 750 °C).  相似文献   

16.
An electroplating process was proposed for obtaining a protective Cr/Cu deposit on the two-phase Mg alloy AZ91D. The corrosion behavior of Cu-covered and Cr/Cu-covered AZ91D specimens was studied electrochemically in 0.1 M H2SO4 with different NaCl concentrations. Experimental results showed that the corrosion resistance of an AZ91D specimen improved significantly after Cr/Cu electrodeposition. The corrosion resistance of Cr/Cu-covered AZ91D decreased with increasing NaCl concentration in 0.1 M H2SO4 solution. After immersion in a 0.1 M H2SO4 with a NaCl-content above 3.5 wt.%, the surface of Cr/Cu-covered AZ91D suffered a few blisters. Cracks through the Cr deposit provided active pathways for corrosion of the Cu and the AZ91D substrate. Formation of blisters on the Cr/Cu-covered AZ91D surface was confirmed based on the results of an open-circuit potential test, which detected an obvious potential drop from noble to active potentials.  相似文献   

17.
A coating consisting of (Cr2N−Mo2S3) overlay coating and an underlying Cr coating was deposited on a steel substrate by D.C. magnetron sputtering. The oxidation characteristics of the deposited double-layered coating were studied at temperatures ranging from 400 to 900 °C in air. The oxidation product was primarily Cr2O3. The unreacted coating beneath the oxide scale had some dissolved oxygen, sulfur, and iron. Oxidation of the coating occurred via complex routes such as the outward diffusion of chromium and nitrogen from Cr2N and iron from the substrate, and the inward transport of oxygen from air, chromium from Cr2N, and S from Mo2S3. This counter diffusion of various ions occurred easily via fine crystallites that constituted the coating, which had some solubility of S, O, and Fe.  相似文献   

18.
In this work, the anticorrosion properties of phenyl trimethoxysilane (PTMS) films coated on aluminium 5000 series alloys were studied. PTMS films were deposited at various cathodic potentials. The optimum electrodeposition potential was found to be ?0.8?V vs. SCE. The coatings were also modified by different amounts of nano-TiO2. In order to introduce corrosion inhibition and a self-repair property of the PTMS film, the addition of chromium (III) corrosion inhibitor in the presence of nano-TiO2 was studied. The anticorrosion performance of coatings was investigated in a 3.5 wt.% NaCl solution. At optimum deposition potential, the ‘critical’ nano-TiO2 and Cr(III) contents were both observed, under which the obtained PTMS coatings show the highest anticorrosion performance. The surface morphologies of PTMS coatings were examined by scanning electron microscopy. The results showed that the coatings deposited at ?0.8?V vs. SCE, from 20?ppm of nano-TiO2 and 0.003 M Cr(III) inhibitor present uniform and compact morphologies.  相似文献   

19.
Fe-based soft-magnetic metallic glasses (MGs) of Fe80−xCrxP9C9B2 (x = 0, 2, 5, 8 and 16 at.%) with high glass-forming ability (GFA), good soft-magnetic properties and high corrosion resistance are fabricated. With the addition of Cr to FePC-based alloys, the GFA and saturation magnetization (Ms) slightly decrease while the corrosion resistance effectively increases. The Fe–Cr–P–C–B BMGs exhibit good GFA and fully glassy rods can be produced up to 1.8 and 1.5 mm in diameter for the 2 and 5 at.% Cr added alloys, respectively. The alloys with 2 and 5 at.% Cr addition also show good soft-magnetic properties featured by high Ms of 1.16 and 1.04 T, low coercivity of 2.7 and 2.2 A/m, respectively. Besides, the corrosion behavior of the alloys was studied by immersion tests and potentiodynamic polarization measurements. It was found that the addition of Cr efficiently enhances the corrosion resistance of Fe–Cr–P–C–B alloys and the glassy alloy with 5 at.% Cr addition exhibits better corrosion resistance in comparison with the stainless steel SUS304 in 3 mass% NaCl solution. The combination of large GFA, good soft-magnetic properties, high corrosion resistance as well as low cost makes the Fe–Cr–P–C–B alloys as promising soft-magnetic and anti-corrosive materials for industrial applications.  相似文献   

20.
To investigate the influence of chromium content on corrosion characteristics of weathering steels, the electrochemical measurements were performed on the steels containing 0–9% Cr (wt.%) in NaHSO3 aqueous solution. The results indicated that the open circuit potential of these steels shifted to the positive direction remarkably, because the additions of Cr improved the passivation capability of the steels. The corrosion current density of the steels containing more than 7% Cr (wt.%) decreased significantly after pre-rusted treatment, implying the corrosion resistance could be enhanced by the formation of protective goethite rust layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号