首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periodic DFT calculations have been performed on a (5 3 3)-oriented hydroxylated NiO surface to model the influence of step edges on the adsorption and sub-surface insertion of Cl at the surface of the passive film on nickel. With increasing Cl coverage, substructures of Ni(OH)2, Ni(OH)Cl or Ni(Cl)2 composition are formed and detached from the surface, suggesting a major role of the step edges in the Cl adsorption-induced thinning mechanism of the oxide film. The calculated energies show the promoting effect of the adsorption of Cl on the energy of detachment of the substructures. At surface saturation, sub-surface insertion becomes energetically more favourable than adsorption. The results suggest a possible bifurcation from the Cl adsorption-induced oxide thinning mechanism to the penetration-induced mechanism of passivity breakdown at saturation in adsorbed Cl of the step edges.  相似文献   

2.
Spin polarized, DFT + U periodic calculations have been used to study the interaction of halides (X) with a (1 × 1)-hydroxylated NiO(1 1 1) surface, a model of passivated nickel. The exchange of surface OH groups by the X ions and the insertion of the halides in the anionic sub-surface layer have been investigated. The substitution of OH by halides is favored by a smaller size of the halide ions and by a lower substitution proportion. An atomistic thermodynamic approach including solvent effects allows us to construct phase diagrams of the surface terminations as a function of the Cl and F concentrations in the aqueous solution. The higher proportion of OH substitution by F, and the lower insertion energy, as compared to Cl, may be related to stronger corrosion caused by F as compared to Cl.  相似文献   

3.
The spontaneous oscillation of corrosion potential between the active and passive states of UNS S30403 stainless steel has been studied in 93.5 wt.% sulphuric acid at 60 °C. Detailed electrochemical analysis of the kinetics of the oscillating potential has suggested the presence of a nickel salt which is stable over a limited potential range. The nickel salt is subject to dissolution at potentials more positive than −0.25 V (MSE), while at lower potentials—less than −0.35 V (MSE)—a stable salt film is formed. A critical coverage of the salt on the surface is the prerequisite for the mixed potential to be shifted into the passive range by an increase in the exchange current density for the sulphuric acid cathodic reaction. However, when the coverage exceeds a critical value, such as can be produced by a potentiostatic hold, the salt effectively blocks the formation of a passive film.  相似文献   

4.
Nickel passive film has been studied in acidic sulfate solutions at pH 2.3 and 3.3 by ellipsometry. During anodic passivation followed by cathodic reduction, the roughness increases with dissolution of nickel, being indicated by gradual decrease of reflectance. However, the ellipsometric parameters, Ψ (arctan of relative amplitude ratio) and Δ (relative retardation of phase), are relatively insensitive to the roughness increase. From the change of Ψ and Δ, δΨ and δΔ, during the anodic passivation and reduction, thickness of the passive oxide film was estimated with assumption of refractive index of nf = 2.3 of the film. The thickness estimated is a range between 1.4 and 1.7 nm in the passive potential region from 0.8 to 1.4 V vs. RHE, having a tendency of thickening with increase of potential. Cathodic reduction at constant potential induces a change of the oxide film to an oxide film with lower refractive index of nf = 1.7, accompanied by thickening of the film about 30% more in the initial stage of reduction for 30 s. The gradual decrease of thickness takes place for the oxide with the lower refractive index in the latter stage. The potential change from the passive region to cathodic hydrogen evolution region may initially cause hydration of the passive oxide of NiO, i.e., NiO + H2O = Ni(OH)2, and during the latter stage of reduction, the hydrated nickel oxide gradually dissolves.  相似文献   

5.
Simulation experiments using oxide thin films with analogues composition and thickness of passive films on Fe-Cr alloys have been performed to reveal the function of alloying elements in passive films. The objective of the present paper is to review recent results of the simulation experiments using Fe2O3-Cr2O3 films. The thinning rate of the films was measured as a function of potential in 1 M HCl by in-situ ellipsometry. The potential-dependent change of the rate well simulated the potential-dependent dissolution behavior of Fe-Cr alloys. The composition of the films having resistance against given environment was obtained by the simulation experiments.  相似文献   

6.
Thin passive films formed on highly corrosion-resistant type-312L stainless steel, containing 20 mass% chromium and 6 mass% molybdenum, in 2 mol dm−3 HCl solution at 293 K have been analyzed by glow discharge optical emission spectroscopy (GDOES). The stainless steel does not suffer pitting corrosion even in this aggressive solution, showing a wide passive potential region. The depth profiles obtained clearly show a two-layer structure of the air-formed and passive films: an outer iron-rich layer and an inner layer highly enriched in chromium. Alloy-constituting molybdenum is deficient in the inner layer of the passive films and is enriched in the outer layer, particularly at the active dissolution potential. The molybdenum species in the outer layer may retard the active dissolution of stainless steel, promoting the formation of stable passive films highly enriched in chromium. Chloride ions are present only at the outermost part of the passive films, not penetrating into the interior part.  相似文献   

7.
The corrosion resistance of Ti-5%Ta-2%Nb alloy and DOCTOR (double oxide coating on titanium for reconditioning) coated titanium by O5+ ion irradiation were compared and investigated for their corrosion behaviour. O5+ ion irradiations were carried out at a dose rate of 1 × 1017, 1 × 1018 and 1 × 1019 ions/m2 at 116 MeV. The surface properties and corrosion resistance were evaluated by using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray (EDX), glancing-angle X-ray diffraction (GXRD) and electrochemical testing methods. The results of electrochemical investigations in 11.5 N HNO3 indicated that the open circuit potential (OCP) of DOCTOR coated titanium is nobler than Ti-5%Ta-2%Nb alloy. The potentiodynamic polarization study of Ti-5%Ta-2%Nb alloy and DOCTOR coated specimen indicated decrease in passive current density with increase in ion doses (1 × 1017 to 1 × 1019 ions/m2) indicating decrease in anodic dissolution. Nyquist arc behaviour in the electrochemical impedance study substantiated the enhancement in oxide layer stability by O5+ ion irradiation. AFM results revealed that the DOCTOR coated Ti surface was dense without gross voids, and the surface roughness decreased by O5+ ion irradiation, but increased after corrosion test. EDX and GXRD patterns of DOCTOR coated Ti sample indicated that the coating was mainly composed of rutile TiO2. Based on the above results, the O5+ ion irradiation effect on corrosion behavior of Ti-5%Ta-2%Nb alloy and DOCTOR coated titanium are discussed in this paper.  相似文献   

8.
In situ electrochemical scanning tunneling microscopy (ECSTM) investigations of the anodic Cu(I)/Cu(II) duplex passive layers grown on Cu(1 1 1) and Cu(0 0 1) in 0.1 M NaOH are reported. The outer Cu(II) part of the duplex film formed on both substrates is crystalline with a terrace and step topography. The observed lattices are consistent with a bulk-like terminated CuO(0 0 1) surface on both substrates. This common crystallographic orientation is explained by the hydroxylation of the otherwise polar and unstable oxide surface at the passive film/electrolyte interface. The epitaxy of the oxide layers is governed by the parallel alignment of the close packed directions of the CuO outer layers and Cu2O inner layers on both substrates. A granular and amorphous layer covering the crystalline CuO(0 0 1) oxide has been observed on Cu(0 0 1) but not on Cu(1 1 1). It is assigned to a film of copper hydroxide corrosion products formed by a dissolution-precipitation mechanism. Its absence on the passivated Cu(1 1 1) surface is explained by the higher stability of the Cu2O(1 1 1) precursor oxide formed on this substrate in the initial stages of growth of the duplex passive film, resulting in a lower amount of dissolved copper.  相似文献   

9.
The EIS technique was used to analyze the electrochemical reaction behavior of Alloy AZ91 in H3PO4/KOH buffered K2SO4 solution at pH 7. The corrosion resistance of Alloy AZ91 was directly related with the stability of Al2O3 · xH2O rich part of the composite oxide/hydroxide layer on the alloy surface. The break down of the oxide layer was estimated to occur mainly on the matrix solid solution phase in Alloy AZ91. The mf capacitive loop arose from the relaxation of mass transport in the solid oxide phase in the presence of Al2O3 · xH2O rich part and from Mg+ ion concentration within the broken area in the absence of Al2O3 · xH2O rich part in the composite oxide structure on the alloy surface. The lf inductive loop had tendency of disappear when the dissolution rate of the alloy decreased as a result of the formation of the protective oxide layer.  相似文献   

10.
Anodic oxidation of copper, nickel and two copper-nickel alloys was studied in cryolite melts at 1000 °C. In an oxide-free melt, anodic dissolution of each material was observed, and the dissolution potential increases with the content of copper. SEM characterization of a Cu55-Ni45 alloy showed that nickel is selectively dissolved according to a de-alloying process. In an alumina-containing melt, a partial passivation occurs at the copper-containing electrodes, at potentials below the oxygen evolution potential. A passive film forms on the copper electrode, while on the nickel electrode no dense oxide layer develops. Copper-nickel alloys were found to form a mixed oxide layer. At higher potentials, the formation of oxygen bubbles on the electrodes results in a degradation of the passive films and a strong corrosion.  相似文献   

11.
Infrared fibers from the chalcogenide family are becoming increasingly prevalent for applications in optical sensing and imaging. In this work, we study the chemical stability of these fibers during long-term storage in air and medium term immersion in water comparable to normal usage conditions during optical monitoring in aqueous environments. A detailed study of surface oxidation in Te-As-Se fibers shows that the oxidation is limited to a superficial layer and progress at a rate of about 20 Å per year. While the elemental glass is insoluble in water, the oxide layer solubilizes rapidly and can lead to surface pitting after oxide removal. The dissolution process is complete after about 2 h of immersion in water. The elemental glass on the other end is chemically stable in water and no significant oxidation process can be detected by cyclic voltammetry. Finally the useful optical properties of these fibers are essentially unchanged after extended storage or immersion in water despite surface oxide or surface pitting.  相似文献   

12.
13.
In the use of iron for reductive dehalogenation of chlorinated solvents in ground water, due to presence of sulfate-reducing bacteria the formation of hydrogen sulfide is expected. To simulate those processes the interface between 99.99% pure iron and 0.1 M NaHCO3 deoxygenated solution with 3.1 × 10−5-7.8 × 10−3 M Na2S · 9H2O added was studied. The surface processes were characterised by the in situ normal Raman spectroscopy (NRS) and ex situ techniques; X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX). The open circuit potential (OCP) was monitored during in situ NRS measurements, and potentiodynamic anodic polarization measurements were carried out to reveal electrochemical behaviour of iron electrode.Open circuit potential-time transients indicated that the native oxide is unstable in deaerated bicarbonate solution and undergoes reductive dissolution (i.e. autoreduction) leaving the metallic Fe covered by Fe(OH)2, adsorbed OH, and patches of ‘magnetite-like’ oxide. Immediately upon injection of the Na2S-solution the iron interface undergoes complex redox surface processes and a poorly crystalline FeS film forms. Potentiodynamic anodic polarization measurements indicated a mechanical breakdown of the FeS film. The origin and initiation of this breakdown process is not clear but is probably a result of internal stress developed during film growth. Based on surface studies supported by electrochemical measurements, a conceptual model for the complex redox processes occurring at the iron interface is proposed. This model describes the structural development of a poorly crystalline FeS, which breaks down, allowing further dissolution of the Fe and formation of FeOOH at the interface. Simultaneously and despite the existence of thick layer of FeS the entrance of hydrogen was evident as the typical hydrogen cracks in bulk of the iron material. This work shed the light on the complexity of the iron/sulfide solution interface, this knowledge is important to understand the kinetic of reduction of organic groundwater contaminants.  相似文献   

14.
The lattice parameters, formation energies and bulk moduli of (Ti, M)C and M(C, Va) with the B1 crystal structure have been investigated using first-principles calculations, where M = Nb, V, Mo and W. The replacement at 0 K of Ti by Mo or W in the TiC lattice is found to be energetically unfavorable with respect to the formation energy. However, it decreases the misfit strain between the carbide and ferrite matrix, a factor which is of critical importance during the early stages of precipitation, thus favoring the substitution of Ti by Mo, as is observed in practice. The effect of Mo in enhancing the coarsening resistance of (Ti, Mo)C precipitates is discussed in terms of its role in the nucleation process, but followed by a more passive contribution during coarsening itself. The role of tungsten has been predicted to have a similar effect to molybdenum on the nucleation and coarsening process. Analysis of precipitates in Ti-, Ti-Mo- and Ti-W-bearing steels shows results consistent with the calculations.  相似文献   

15.
A.G. Muñoz 《Corrosion Science》2005,47(9):2307-2320
The cathodic deposition of transition metals allows obtaining surface conditions similar to those found in alloys and to study the anodic processes occurring on them. In this work, some aspects dealing with the influence of the presence of electro-deposited particles on the growth of anodic oxide films at potentials lower than 10 V in neutral acetate buffer solution were analysed by conventional electrochemical techniques supported by SEM and TEM. At the first stages of anodization, the particles lose progressively their contact with the substrate due to the growth of the aluminium oxide film leaving a defective structure. Thus, at potentials higher than 0.9 V SSE, the electrical contact of particles is established by tunnelling through localized states generated by defects in the band-gap. This, in turn, leads to the formation of preferential conductive paths. Thus, the dissolution/passivation of particles and the evolution of oxygen on them at higher anodic potentials could be observed. At potentials higher than 4 V, defects are released towards the oxide/electrolyte interface and the behaviour of pure aluminium oxide is observed again.  相似文献   

16.
The feasibility of surface chromium enrichment by pack-cementation was assessed for different low chromium-containing cobalt alloys, in order to improve their resistance against high temperature oxidation. A binary Co-10Cr alloy, two ternary Co-10Cr-0.5C and Co-10Cr-1.0C alloys and two TaC-containing Co-10Cr-based alloys were elaborated by foundry for the study. 7.5 h-long and 15 h-long cementations at 1050 °C, followed or not by a 75 h-long heat treatment at 1200 °C were performed on these alloys. Microstructure examinations performed using a Scanning Electron Microscope and concentration profiles using Electron Probe Micro Analysis-Wavelength Dispersion Spectrometry were realized in order to analyze the level of Cr-enrichment of the sub-surface region, with as studied criteria: the nature of the external Cr-enriched zone, the maximal chromium content on surface and the depth of chromium enrichment. The Cr-enrichment of the sub-surface succeeded for the Co-10Cr alloy and for the two tantalum-containing alloys, with the formation of an external metallic zone containing around 30 wt.% Cr. In contrast the chromium carbides-containing alloys were effectively enriched in chromium in surface but in the form of a continuous chromium carbide layer which can induce other problems such as spallation and then possible fast oxidation of the denuded alloy. Finally it appeared that only the carbon-free alloys, and the alloys reinforced by carbides more stable than chromium carbides, are potentially able to be successful enriched in chromium in their sub-surface by pack-cementation.  相似文献   

17.
Selective dissolution of Ni(γ) in a binary Ni(γ)/Ni3Al(γ′) two-phase alloy was performed in an aqueous electrolyte including 1 wt.% (NH4)2SO4 and 1 wt.% citric acid to obtain a rough, γ′-terminated surface. The electrochemical potential for the selective dissolution was determined from the polarization curves of the γ and γ′ single-phase alloys. The selective dissolution tests proved that γ was precisely removed above 1.7 VSCE, resulting in the formation of a rough, γ′-terminated surface. Surface analyses revealed that a passive AlOx, which retarded the dissolution, was preferentially formed on γ′, resulting in a successful selective dissolution.  相似文献   

18.
The passivation characteristics of sulfuric acid cleaned mild steel in spent Bayer liquor (pH 14.4 and 160 °C) are examined using a high pressure nickel flow loop. An entrained atmosphere of 99.90% v/v oxygen gas is incorporated as an experimental variable along with Reynolds number (141,700 and 50,950) and intensity of fluid flow disturbance. State of passivation has been defined using criteria derived from transient polarisation resistance measurements and large-scale polarisation, linear sweep voltammetry. In the majority of cases, oxygenation introduces instantaneous passivation of the mild steel on contact with the Bayer liquor. In comparison to de-oxygenated and aerated electrolytes, this rapid rate of passivation can lead to up to an order of magnitude reduction in the quantity of charge associated with metal dissolution over 20 h. Although relative rates of corrosion when passive are low and largely independent of the level of flow disturbance, dissolution rates when passive are somewhat larger at the higher Reynolds number.  相似文献   

19.
The electrochemical behaviour of bright Cr-deposits was studied in 1 M H2SO4 at 27 °C. The bright Cr-deposits were electroplated by using direct- or pulse-current (DC or PC) at 50 °C in a sulfate-catalyzed chromic acid bath with plating current densities of 30, 40, 50 and 60 A/dm2 respectively. The results show that the surface-crack density of bright Cr-deposits plated with either DC or PC decreased with increasing the plating current density, whereas the passive current densities in their anodic polarization curves increased when plating current densities increased. From the results of electrochemical tests, it was found that passive and active dissolution rates of the Cr-deposits were not affected by the amount of the surface cracks developed on the Cr-deposit. Corrosion resistance of the Cr-deposit plated with PC was better than that with DC. The critical current density in the anodic polarization curve of the former is approximately one order less than that of the latter. The Cr-deposit plated with PC can be passivated more easily than that with DC. The rate of active dissolution of Cr deposits is much higher than that of passive dissolution. The aforementioned results can be recognized with AC impedance test polarized in passive and open-circuit potentials.  相似文献   

20.
Inhibition of the corrosion of aluminum (Al) in hydrochloric acid (HCl) by sulfonic acid (SA), sodium cumene sulfonate (SCS), and sodium alkyl sulfate (SAS) has been studied using weight-loss and potentiostatic polarization methods. The results drawn from the two techniques are comparable and exhibit small discrepancy. The inhibition action depends on the chemical structure and the concentration of the inhibitors, the concentration of the corrosive medium, and the temperature. The efficiency of inhibitors increases in the order: SAS < SCS < SA in the studied concentration range. Results for weight loss indicated inhibitor efficiency (I%) increased with increasing inhibitor concentration, reaching a maximum inhibiting power of 85.6% at its highest values. The inhibitor efficiency (I%) decreased as the concentration of HCl increases. For the tested additives, the increase in temperature resulted in decreasing of the inhibitor efficiency (I%) and decreasing in the degree of surface coverage (θ). These results were indicative of increased aluminum dissolution with increasing temperature. The degree of surface coverage (θ) increased linearly with the logarithm of the inhibitor concentration fitting a Temkin isotherm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号