首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibitory effect of three Schiff bases 2-{[(2-sulfanylphenyl)imino]methyl}]phenol (A), 2-{[(2)-1-(4-methylphenyl)methylidene]amino}-1-benznethiol (B), and 2-[(2-sulfanylphen-yl)ethanimidoyl)]phenol (C) on corrosion of mild steel in 15% HCl solution has been studied using weight loss measurements, polarization and electrochemical impedance spectroscopy (EIS) methods. The results of the investigation show that the compounds A and B with mean efficiency of 99% at 200 mg/L additive concentration have fairly good inhibiting properties for mild steel corrosion in hydrochloric acid, and they are as mixed inhibitor. All measurements show that inhibition efficiencies increase with increase in inhibitor concentration. This reveals that inhibitive actions of inhibitors were mainly due to adsorption on mild steel surface. Adsorption of these inhibitors follows the Langmuir adsorption isotherm. Thermodynamic adsorption parameters (Kads, ΔGads) of studied Schiff bases were calculated using the Langmuir adsorption isotherm. Activation parameters of the corrosion process such as activation energies, Ea, activation enthalpies, ΔH, and activation entropies, ΔS, were calculated by the obtained corrosion currents at different temperatures. Obvious correlation was found between the corrosion inhibition efficiency and the calculated parameters. The obtained theoretical results have been adapted with the experimental data.  相似文献   

2.
A.M. Badiea  K.N. Mohana   《Corrosion Science》2009,51(9):2231-2241
The corrosion inhibition of 2-hydrazino-4,7-dimethylbenzothiazole on low carbon steel in industrial water has been investigated at different temperatures and fluid velocities at different concentrations of the inhibitor using mass loss, potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The results showed that corrosion resistance increased by increasing the inhibitor concentration. Optimization of the three variables has been made and correlating the results obtained using Box–Wilson statistical method. The adsorption process on low carbon steel surface obeys Flory–Huggins isotherm. The values of ΔGads obtained suggest that, the adsorption process of 2-HMBT on low carbon steel is chemisorption. The activation energy increased with increasing the concentration of inhibitors leading to decrease of the pre-exponential factor, and the entropy of activation increased negatively in the presence of inhibitor. SEM was used to identify the film formed on the metal surface.  相似文献   

3.
The inhibition effect of four new Schiff bases on the corrosion of 304 stainless steel in 1 M HCl has been studied by polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. Polarization curves indicated that all studied Schiff bases act as mixed type (cathodic/anodic) inhibitors. The adsorption of the inhibitors was well described by the Langmuir adsorption isotherm and the adsorption isotherm parameters (Kads, ΔGads) were determined at room temperature. Effect of temperature on the efficiency of the corrosion inhibition process was studied and the values of activation energy, pre-exponential factor (λ), enthalpy of activation and entropy of activation were calculated to elaborate the mechanism of corrosion inhibition. Differences in inhibition efficiency between four tested inhibitors are correlated with their chemical structures.  相似文献   

4.
The inhibition effect of novel nonionic surfactants on the corrosion of carbon steel (CS) in 1 M HCl was studied at different temperatures (20-60 °C) by weight loss, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. The CS surface morphology was investigated by SEM. The obtained results showed that the prepared nonionic surfactants are excellent inhibitor in 1 M HCl, and the inhibition efficiency (η) increases with the inhibitor concentration and temperature increasing. The adsorption of inhibitors on the CS surface obeys the Langmuir adsorption isotherm equation. Thermodynamic parameters have been obtained by adsorption theory. Polarization curves show that the synthesized inhibitors are mixed-type inhibitors in hydrochloric acid.  相似文献   

5.
The effect of 1-methyl-3-pyridin-2-yl-thiourea on the corrosion resistance of mild steel in H2SO4 solution was investigated by different techniques. The results show that the inhibition efficiency increases with the increase of inhibitor concentration. This compound affects both the anodic dissolution of steel and the hydrogen evolution reaction in 0.5 M H2SO4. The adsorption of this inhibitor is also found to obey the Langmuir adsorption isotherm. From the adsorption isotherm, value of the ΔGads for the adsorption process was calculated. From the corrosion rate obtained at 25-45 ± 1 °C Ea, ΔHa and possible mechanism have been proposed.  相似文献   

6.
The inhibiting effect of 12-aminododecanoic acid (AA) on corrosion of carbon steel (CS) in CO2-saturated hydrochloric acid was investigated. It was found that AA acts as a mixed-type inhibitor, yielding a maximum inhibition efficiency of 98.1 ± 0.1%. The mechanism of its corrosion inhibition is by formation of a self-assembled monolayer (SAM), which presents a tight hydrophobic barrier imposed by the (-CH2)11 chain. In-situ PM-IRRAS measurements revealed that the SAM is amorphous. The SAM formation process was found to be spontaneous and reversible. The corresponding standard Gibbs energy of AA adsorption on CS was calculated to be −28 kJ mol−1.  相似文献   

7.
The inhibition performance of the 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole (4-MAT) on mild steel in normal hydrochloric acid medium (1 M HCl) at 30 °C was tested by weight loss, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) techniques. This organic compound inhibits the acidic corrosion even at very low concentration, reaching a value of inhibition efficiency up to 98% at a concentration of 3 × 10−4 M. The results obtained from the different corrosion evaluation techniques are in good agreement. Polarisation curves indicate that 4-MAT is a mixed inhibitor, affecting both cathodic and anodic corrosion currents. Data, obtained from EIS measurements, were analyzed to model the corrosion inhibition process through appropriate equivalent circuit model, a constant phase element (CPE) has been used. The adsorption of 4-MAT on the steel surface, in 1 M HCl solution, obeys to Langmuir’s isotherm with a very high negative value of the free energy of adsorption ΔG°ads (chemisorption). X-ray photoelectron spectroscopy (XPS) was carried out to establish the mechanism of corrosion inhibition of mild steel in 1 M HCl medium in the presence of 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole (4-MAT).  相似文献   

8.
M.A. Hegazy   《Corrosion Science》2009,51(11):2610-2618
The corrosion inhibition characteristics of the synthesized cationic gemini surfactants, namely bis(p-(N,N,N-decyldimethylammonium bromide)benzylidene thiourea (10-S-10), bis(p-(N,N,N-dodecyldimethylammonium bromide)benzylidene thiourea (12-S-12) and bis(p-(N,N,N-tetradecyldimethylammonium bromide)benzylidene thiourea (14-S-14) on the carbon steel corrosion in 1 M hydrochloric acid have been investigated at 25 °C by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiencies obtained from all methods employed are in good agreement with each other. The obtained results show that compound 14-S-14 is the best inhibitor with an efficiency of 97.75% at 5 × 10−3 M additive concentration. Generally, the inhibition efficiency increased with increase of the inhibitor concentration. Changes in impedance parameters (charge transfer resistance, Rct, and double-layer capacitance, Cdl) were indicative of adsorption of 14-S-14 on the metal surface, leading to the formation of a protective film. The potentiodynamic polarization measurements indicated that the inhibitors are of mixed type. The adsorption of the inhibitors on the carbon steel surface in the acid solution was found to obey Langmuir’s adsorption isotherm. The free energy of adsorption processes were calculated and discussed. The surface parameters of each synthesized surfactant were calculated from its surface tension including the critical micelle concentration (CMC), maximum surface excess (Γmax) and the minimum surface area (Amin). The free energies of micellization (ΔGomic) were calculated. The surface morphology of carbon steel sample was investigated by scanning electron microscopy (SEM).  相似文献   

9.
The adsorption and corrosion inhibition of the gemini surfactants 1,2-ethane bis(dimethyl alkyl (CnH2n+1) ammonium bromide) (designated as n−2−n, n=10, 12 and 16) on the steel surface in 1 M hydrochloride acid were studied using the weight loss method. It was found that the adsorption of the gemini surfactants on the steel surface is the main reason to cause the steel corrosion inhibition in hydrochloride acid, and the inhibition efficiency increases with the increase of surfactant concentration and reaches the maximum value near the CMC. A possible adsorption model of gemini surfactant onto the metal surface was also discussed.  相似文献   

10.
The corrosion inhibition of mild steel in a 2.5 M H2SO4 solution by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT) was studied at different temperatures, utilising open circuit potential, potentiodynamic and impedance measurements. The results indicate that APTT performed as an excellent mixed-type inhibitor for mild steel corrosion in a 2.5 M H2SO4 solution and that the inhibition efficiencies increased with the inhibitor concentration but decreased proportionally with temperature. The kinetic and thermodynamic parameters for adsorption of APTT on the mild steel surface were calculated. A chemisorption mechanism of APTT molecules on the mild steel surface was proposed based on the thermodynamic adsorption parameters.  相似文献   

11.
Adsorption of four derivatives of piperidinylmethylindoline-2-one on mild steel surface in 1 M HCl solution and its corrosion inhibition properties has been studied by a series of techniques, such as polarization, electrochemical impedance spectroscopy (EIS), weight loss and quantum chemical calculation methods. The values of activation energy (Ea) for mild steel corrosion and various thermodynamic parameters were calculated and discussed. Potentiodynamic polarization measurements showed that all inhibitors are mixed type. The degree of surface coverage was determined by using weight loss measurements and it was found that adsorption process of studied inhibitors on mild steel surface obeys Langmuir adsorption isotherm.  相似文献   

12.
The adsorption effect of 1‐((2‐hydroxynaphtalen‐1‐yl)(phenyl)methyl)urea (HNPU) on corrosion behavior of carbon steel in 1 M hydrochloric acid solution was investigated using weight loss, potentiostatic polarization, and infrared spectroscopy methods. Surface morphology was studied by scanning electron microscopy (SEM). The experimental results, suggest that HNPU inhibited the corrosion of carbon steel in acid solution and the inhibition efficiencies increased as the concentration of the compound in the solution was increased. The calculated inhibition efficiencies from the two investigated methods were in good agreement. Potentiostatic polarization measurements indicate that HNPU acts as a mixed‐type inhibitor. The adsorption of the inhibitor on the carbon steel surface obeys Langmuir adsorption isotherm. The values of activation energy and the thermodynamic parameters, such as adsorption equilibrium constant (Kads), adsorption free energy (ΔGads), adsorption heat (ΔHads), and adsorption entropy (ΔSads) values were calculated and discussed. The results obtained from infrared spectra, confirmed the adsorption of inhibitor on the alloy surface after immersion in acidic solution containing HNPU. The SEM analysis indicated that there are more lightly corroded and oxidative steel surface for the specimens after immersion in acidic solution containing HNPU than that in blank.  相似文献   

13.
The synergistic effect of iodide ions and benzisothiozole-3-piperizine hydrochloride (BITP) on corrosion inhibition of mild steel in 0.5 M H2SO4 solution has been studied by both chemical and electrochemical methods. The corrosion performance of BITP in 1.0 M HCl and 0.5 M H2SO4 media was examined and compared. The adsorption of BITP and its combination with iodide ions on mild steel surface followed Langmuir adsorption isotherm via chemisorption mechanism. The calculated values of synergism parameter (Sθ) were found to be greater than unity. This result clearly showed the existence of synergism between iodide ions and BITP molecules.  相似文献   

14.
The inhibition effect of 3-amino-1,2,4-triazole-5-thiol (3ATA5T) was investigated in 0.5 M HCl on carbon steel (CS) by electrochemical impedance spectroscopy and potentiodynamic measurements at various concentrations and temperatures. Results showed that the correlation between experimental (inhibition efficiencies, ΔGads, Ea) and quantum calculation parameters (dipole moment, EHOMO, ELUMO). The high inhibition efficiency was declined in terms of strongly adsorption of protonated inhibitor molecules on the metal surface and forming a protective film.  相似文献   

15.
Inhibition of mild steel corrosion in 1 M HCl solution by Pheniramine drug was studied using weight loss, electrochemical impedance spectroscopy, linear polarization resistance, and potentiodynamic polarization measurements. The values of activation energy (Ea) and different thermodynamic parameters such as adsorption equilibrium constant (Kads), free energy of adsorption , adsorption enthalpy and adsorption entropy were calculated and discussed. The adsorption process of studied drug on mild steel surface obeys the Langmuir adsorption isotherm. Potentiodynamic polarization measurements showed that Pheniramine is mixed-type inhibitor. Further, theoretical calculations were carried out and relations between computed parameters and experimental inhibition efficiency were discussed.  相似文献   

16.
The corrosion inhibition behavior of benzotriazole, Na3PO4 and their mixture on carbon steel in 20 wt.% (0.628 mol l−1) tetra-n-butylammonium bromide aerated aqueous solution was investigated by weight-loss test, potentiodynamic polarization measurement, electrochemical impedance spectroscopy and scanning electron microscope/energy dispersive X-ray techniques. The inhibition action of BTA or SP or inhibitors mixture on the corrosion of carbon steel is mainly due to the inhibition of anodic process of corrosion. The results revealed that inhibitors mixtures have shown synergistic effects at lower concentration of inhibitors. At 2 g l−1 BTA and 2 g l−1 SP showed optimum enhanced inhibition compared with their individual effects.  相似文献   

17.
The electrochemical behavior of carbon steel in saltwater saturated with CO2 with/without an new synthesized imidazoline inhibitor was studied using polarization and electrochemical impedance spectrum (EIS), and the inhibitive ability of the inhibitor was evaluated by weight-loss method in 298-328 K temperature range. Results showed that the inhibition efficiency is up to above 80%, and imidazoline is a kind of mixed-type inhibitor. It was seen that the adsorption of imidazoline on Q235 steel can be fitted to Frumkin isotherm equation. Quantum chemistry calculation results show that the imidazoline ring and heteroatoms are the active sites of the inhibitors.  相似文献   

18.
The inhibition of mild steel corrosion in aerated 0.5 N H2SO4 solution was investigated using potentiodynamic polarization studies (Tafel), linear polarization studies, electrochemical impedance spectroscopy studies, adsorption studies, and surface morphological studies. The effect of inhibitor concentration on corrosion rate, the effect of temperature, degree of surface coverage, adsorption kinetics, and surface morphology are investigated. The inhibition efficiency increased markedly with increase in the additive concentration and decreased slightly with increasing temperature. The presence of DMSTT decrease the double-layer capacitance and increase the charge transfer resistance. The value of activation energy (E a) of metal corrosion, adsorption equilibrium constant (K ads), and free energy of adsorption (ΔG ads) were calculated from the temperature dependence of corrosion current. The adsorption of inhibitor molecule on mild steel surface follow Langmuir isotherm. DMSTT offers excellent inhibition properties and acts as a mixed-type inhibitor.  相似文献   

19.
The inhibition effect of four double Schiff bases on the corrosion of mild steel in 2 M HCl has been studied by polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The inhibitors were adsorbed on the steel surface according to the Langmuir adsorption isotherm model. From the adsorption isotherm, some thermodynamic data for the adsorption process were calculated and discussed. Kinetic parameters activation such as Ea, ΔH∗, ΔS∗ were evaluated from the effect of temperature on corrosion and inhibition processes. Quantum chemical calculations have been performed and several quantum chemical indices were calculated and correlated with the corresponding inhibition efficiencies.  相似文献   

20.
The adsorption of four CO2 corrosion inhibitors on silica sand and their subsequent inhibition activity at sand-deposited steel has been investigated. The presence of a sand deposit affects the performance of inhibitors at carbon steel due to their competitive adsorption on sand. Sulfur-containing organic compounds show minimal adsorption on sand compared to pyridinium surfactants and provide the highest inhibition efficiency at the sand-deposited steel. The extent of inhibitor adsorption onto sand is discussed in relation to their chemical structures. The significance of determining the adsorption affinity to sand in the selection of inhibitors to mitigate under-deposit corrosion is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号