首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究狭窄河谷深覆盖层上高面板堆石坝的应力变形特性,本文基于邓肯-张E-B非线性本构模型,采用中点增量法,结合九甸峡高面板堆石坝工程实例,对其施工期和运行期的应力变形进行了三维有限元仿真分析。结果表明:与一般建基于宽浅河谷及基岩坝基情况的面板堆石坝相比,在狭窄河道深覆盖层地基上建设高面板堆石坝,竣工期和蓄水期的坝体水平位移分布受覆盖层的影响较大,坝体应力分布也呈现出与岩石坝基有所不同的分布特征,面板的应力变形基本均在正常范围内,但蓄水期面板接缝尤其是周边缝位移相对较大,因此建议设计应对接缝止水采取相应的防护措施。  相似文献   

2.
中厚覆盖层上中低面板堆石坝应力变形分析   总被引:1,自引:0,他引:1  
在中厚覆盖层上修建中低面板堆石坝目前较为普遍,其应力变形特性与深厚覆盖层上修建的高面板坝有较大差异,因此有必要进行研究。利用目前应用较为广泛的邓肯-张E-B模型,采用二维有限元分析法针对位于宽河谷中的双溪口面板堆石坝竣工期及蓄水期的堆石体及面板的应力变形特性进行研究。结果表明:相比竣工期,蓄水期坝体沉降、向下游的水平位移、大坝大小主应力、应力水平及面板挠度均有所增加,其中以面板挠度及大坝水平位移增加最为明显,挠度增加了16.61 cm,水平位移增加约1倍,沉降增加幅度约为8%,大、小主应力增加10%~20%,应力水平增加约50%。大坝在竣工期及蓄水期的应力及变形均在允许范围内,大坝运行正常。  相似文献   

3.
狭窄河谷中高面板堆石坝应力变形特性研究   总被引:5,自引:0,他引:5  
结合高179.5m的洪家渡面板堆石坝,采用数值计算分析与大型离心模型试验的方法,深入研究了狭窄河谷中高面板堆石坝的应力变形特性.通过分析计算,给出了狭窄、不对称河谷地形条件下高混凝土面板堆石坝在施工期和蓄水运行期的应力、变形分布规律,以及面板周边缝的变形特点.同时,还对不同填筑干密度对坝体和面板应力变形特性的影响进行了对比分析.研究结果表明:河谷的地形条件对面板应力变形有着显的影响,通过改进碾压施工技术,提高填筑密度,将对坝体和面板的应力变形性状的改善,提高坝体的整体安全性起到重要的作用.  相似文献   

4.
采用三维有限元法对观音岩面板堆石坝完建期(竣工期)和蓄水期的应力变形进行模拟计算,分析了不同时期坝体及面板的应力变形情况.计算结果表明,大坝应力变形满足安全要求.  相似文献   

5.
本文结合179.5m高的洪家渡面板堆石坝,采用数值计算分析与大型离心模型试验的方法,深入研究了狭窄河谷中高面板堆石坝的应力变形特性。通过分析计算,给出了狭窄、不对称河谷地形条件下高混凝土面板堆石坝在施工期和蓄水运行期的应力、变形分布规律,以及面板周边缝的变形特点。同时,还对不同填筑干密度对坝体和面板应力变形特性的影响进行了对比分析。研究结果表明:河谷的地形条件对面板应力变形有着显著的影响,通过改进碾压施工技术,提高填筑密度,将对坝体和面板的应力变形性状的改善,提高坝体的整体安全性起到重要的作用。  相似文献   

6.
本文以贵州省黔中平寨水库高混凝土面板堆石坝为研究对象,采用三维有限元数值分析法研究流变效应对面板堆石坝应力变形的影响。结果表明,狭窄河谷高面板堆石坝考虑流变特性后,坝体变形程度明显增大,变形持续时间较长,考虑流变特性后坝体沉降、面板挠度、面板轴向和顺坡向应力均有明显增加。因此,在进行狭窄河谷高面板堆石坝应力变形计算时,不可忽略流变效应的影响。同时在工程设计和建设中还应加强一系列工程措施,来适应和消减流变效应对高面板堆石坝应力变形的影响。  相似文献   

7.
泗南江水电站混凝土面板坝三维有限元分析   总被引:1,自引:0,他引:1  
杨玲  赵亚明  王飞 《人民长江》2012,(Z1):189-191
泗南江水电站大坝为混凝土面板堆石坝。采用Duncan E-B非线性模型对坝体进行三维有限元应力应变分析,并考虑了混凝土面板与垫层料之间的接触面特性。通过分析,得出竣工期和蓄水期坝体的应力变形,以及蓄水期混凝土面板的应力、变形和面板周边缝及垂直缝的变形。依据计算结果分析评价了混凝土面板堆石坝的应力变形性状。评价结果表明,泗南江水电站混凝土面板坝的设计是合理的。  相似文献   

8.
采用非线性有限元分析方法,对甘肃省龙首二级(西流水)水电站面板堆石坝的应力变形特性进行了分析,给出了坝体及面板在施工期和蓄水期的应力和位移分布.并分析了高趾墙的应力变形特性。计算结果表明,由于四流水面板堆石坝位于狭窄河谷,坝体的变形受岸坡约束影响较大,面板在蓄水期沿坝轴线方向和坝坡方向呈双向受压状态.高趾墙大部分区域承受拉应力,但拉应力数值不大。本文的计算分析结果除可以为西流水工程的设计、施工提供依据外.对其它类似工程也具有一定的参考价值。  相似文献   

9.
大坝覆盖层复杂的面板堆石坝在填筑期或运行期会出现拉裂、挤压、渗漏等破坏,为研究面板堆石坝的受力变形特征,采用数值模拟的方法,模拟了面板堆石坝竣工期和满蓄期两个时期的坝体应力变形特性,表明在主次堆石交界处范围内的应力数值较高,此处必须采取合理施工措施,提高坝体强度。满蓄期面板拉应力较大,为避免受拉出现裂缝,要在坝体两侧受拉显著范围内加大配筋密度。  相似文献   

10.
依托毛藏寺水电站工程,建立三维有限元模型,采用Duncan E-B非线性本构模型对毛藏寺蓄能电站混凝土面板堆石坝设计方案进行了三维静力有限元应力、变形计算分析。结果表明:坝体的应力和变形基本上处于合理的范围之中,尽管坝体整体变形量级不大,但坝体的变形分布受局部地形影响较大。顺坝轴线和顺坝坡方向最大应力均出现在面板中部。受岸坡地形和趾板的约束作用,面板周边存在局部拉应力区,拉应力数值不高。总体而言,蓄水期面板应力状态正常。  相似文献   

11.
在狭窄河谷采用超硬岩填筑高混凝土面板堆石坝坝体应力变形复杂,技术难度大。针对江坪河水电站大坝面板坝坝料、坝高和河谷狭窄的特点,为减小大坝变形和不均匀变形,从河谷形状、坝体填筑标准、坝体分区、碾压机具及碾压工艺、施工以及面板设计等几个方面进行了深入研究,提出一套适用于狭窄河谷高面板堆石坝的变形控制措施,可为狭窄河谷高混凝土面板堆石坝建设提供参考。  相似文献   

12.
利用砂土UH模型对两岔河水库工程心墙堆石坝进行了应力变形三维有限元计算,分析了坝体在竣工期和满蓄期的应力变形特性。结果显示:坝体在竣工期和满蓄期的最大沉降分别为73.8cm和77.7cm;坝体在竣工期和满蓄期的大主应力、小主应力均存在拱效应,大主应力的拱效应更显著,心墙内小主应力均为正,未出现拉应力;竣工期和满蓄期防渗墙左右两侧小主应力出现了拉应力区,防渗墙最大拉应力和压应力均在混凝土强度容许范围内。大坝应力变形的计算结果符合心墙堆石坝应力变形一般规律。有限元计算结果均在合理范围内,表明砂土UH模型在土石坝工程中有较好的适用性。  相似文献   

13.
《人民黄河》2013,(9):103-105
采用三维有限元分析方法,利用通用有限元软件ADINA建立花坪河面板堆石坝三维有限元模型,分析了蓄水期坝体及面板各部分应力、位移分布,同时考察了面板接缝之间的变形特性。计算结果表明:坝体全部处于受压状态,下游坝坡附近存在低压应力区;面板中部主要为受压状态,在两岸岸坡附近为受拉状态;面板发生张拉变形的垂直缝主要集中在两岸,周边缝变形全部为张拉变形。  相似文献   

14.
基于三维有限元非线性方法,考虑某高面板堆石坝面板分期施工浇筑的特点,建立精细模拟面板特性的子模型,用有厚度的接触面单元模拟坝体与面板的接触面,设置相应的连接单元模拟面板缝的相互作用,分析了该面板堆石坝在施工期和蓄水期坝体和面板的应力变形,并与类似坝高的面板堆石坝的计算或监测结果进行比较。结果表明:在施工期和蓄水期坝体的最大沉降值约为坝高的1%,位于次堆石区;面板应力以压应力为主,拉应力主要集中在面板与周边山体连接处;周边缝的最大错动剪切变形、最大张拉变形及最大沉降剪切变形均未超过30 mm。  相似文献   

15.
高面板堆石坝面板应力分布特性及其规律   总被引:2,自引:2,他引:0  
孔宪京  张宇  邹德高 《水利学报》2013,44(6):631-639
准确把握高面板堆石坝静、动力条件下面板高应力区分布特性是保障防渗面板安全的关键问题。本文采用非线性三维有限元方法,以200m高坝为例,系统地研究高混凝土面板堆石坝在填筑和蓄水过程、遭遇瞬时地震及震后面板的高拉与压应力区分布特性及其规律,以及坝体几何特征参数对面板高应力区分布的影响。研究结果表明:面板顺坡向高拉应力区集中分布在河谷处岸坡附近及河谷中央(河谷坝段)坝高4/5~2/3范围内,坝轴向高压应力区主要分布在河谷中央竖缝两侧面板之间,据此建议了一系列改善面板应力的工程措施。  相似文献   

16.
传统的土石坝结构计算分析中通常忽略坝体与基岩之间的摩擦滑动变形, 这与实际情况不符,坝体-地基接触摩擦效应对于修建在狭窄陡峻河谷区的特高坝表现尤为明显。采用三维有限元方法对修建在狭窄河谷区特高心墙堆石坝结构安全性进行了研究,研究中考虑了坝体-地基摩擦接触效应,模拟了水库蓄水、坝料湿化、流变等多因素共同作用下坝体结构力学行为以及坝体-地基接触位移演化过程。基于倾度法对坝体运行过程中可能的裂缝扩展区域进行了预测。研究得出:对于狭窄河谷上特高土石坝,坝体与地基的相对滑移较大,计算中应予以考虑。研究结论可为峡谷区特高心墙堆石坝设计提供技术依据。  相似文献   

17.
高面板堆石坝面板应力分布特性及其规律   总被引:1,自引:0,他引:1  
准确把握高面板堆石坝静、动力条件下面板高应力区分布特性是保障防渗面板安全的关键问题。本文采用非线性三维有限元方法,针对150m以上的高面板堆石坝,系统地研究其在填筑和蓄水过程、遭遇瞬时地震及震后面板的高拉、压应力区分布特性及其规律,以及坝体几何特征参数对面板高应力区分布的影响。研究结果表明:面板顺坡向高拉应力区集中分布在河谷处岸坡附近及河谷中央(河谷坝段)坝高4/5~2/3范围内,坝轴向高压应力区主要分布在河谷中央竖缝两侧面板之间,据此建议了一系列改善面板应力的工程措施。  相似文献   

18.
狭窄河谷中的高面板堆石坝长期应力变形计算分析   总被引:1,自引:1,他引:0  
根据已建面板堆石坝的竣工后沉降变形规律和室内大型三轴流变试验结果,提出了堆石体长期变形流变模型.对建设在狭窄河谷中的九甸峡混凝土面板堆石坝进行了三维应力变形分析,考察了三维效应、堆石体流变等因素对大坝长期应力变形特性的影响.结果表明,狭窄河谷岸坡对坝体存在拱效应,减小坝体应力,同时,由于右岸坡度缓于左岸,右岸侧坝体较左岸侧存在更大的朝向河谷中心的位移.拱效应也阻碍了面板的弯曲和沉降变形,使靠近岸坡的面板接缝拉开和错动,并可能导致河床段面板中上部发生挤压破坏.坝体流变变形增大了面板挤压破坏的可能性.库水推力导致面板在挠曲的同时发生顺岸坡向拉伸,坝体的后期流变变形则可减小或改变面板的拉伸状态.  相似文献   

19.
为研究堆石料填筑标准对于狭窄河谷高面板堆石坝应力变形的影响规律,本文运用三维有限元法,以某高面板堆石坝工程为例,进行了堆石料不同填筑标准下的大坝应力变形特性的对比研究。结果表明:随着堆石料填筑标准的提高,坝体和面板的应力变形均基本呈现单调递减的变化规律,且堆石料填筑标准对坝体和面板应力变形的影响存在一个明显的"拐点",如本文工程实例的主堆石料干密度影响"拐点"为2.16 g/cm3。因此,通过提高堆石料填筑标准,可以明显改善狭窄河谷中高面板堆石坝的应力变形状况,但应注意堆石料填筑标准对大坝应力变形的影响存在"拐点"这一特性。  相似文献   

20.
水布垭混凝土面板堆石坝设计   总被引:1,自引:0,他引:1  
在水布垭混凝土面板堆石坝的设计中,针对筑坝材料的特性和堆石体的变形特征,进行了坝体结构及坝体材料分区的设计。对面板应力应变分析,采用E-B模型进行三维非线性有限元计算,计算成果表明:就坝体变形而言竣工期和蓄水期的水平位移与垂直沉降值,比照已建工程均在劲旅范围内;面板位移与应力分析的结果亦与已建工程的面板应务分布规律一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号