首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李博 《城市建筑》2023,(8):135-138+142
文章以兰州地铁2号线盾构隧道近接在建暗挖隧道施工为背景,结合地表沉降、附近建筑物沉降和地下管线沉降监测数据,对富水强风化粉砂岩和砂卵石复合地层下盾构隧道近接暗挖隧道施工变形进行了分析。结果表明:监测断面处靠近盾构隧道侧变形较大,远离侧变形较小;建筑物靠近路线外侧沉降平均值更大,为8 mm;靠近线路内侧沉降平均值较小,为3 mm;地下管线靠近盾构隧道侧沉降值最大为26mm,远离盾构隧道侧最大沉降值为10 mm。建筑物沉降值和地下管线沉降值均远小于地表沉降值,表明建筑物和地下管线均可抵消部分地层变形影响。监测数据均在设计要求之内,表明暗挖区域洞内深孔WSS注浆、盾构管片增加环向支撑等加固措施可以有效提高隧道和地层的稳定性。  相似文献   

2.
重叠隧道施工数值分析   总被引:1,自引:1,他引:1  
以佛山地铁莲塘-张槎盾构区间重叠隧道为工程依托,运用MIDAS/GTS有限元程序模拟盾构开挖的全过程,采用不加固和地面加固两种施工工况,分析不同工况下重叠隧道施工对地表沉降和盾构管片内力影响,结果表明:地层受盾构施工的影响范围都逐步扩展,地表沉降曲线符合Peck沉降槽规律。地面加固后地表最大沉降量约为18.8mm,未加固地表最大沉降量约为102.3mm。洞内注浆加固后能够减小盾构管片内力。  相似文献   

3.
盾构隧道施工过程中,由于地层特性差异以及同步注浆工艺的影响,容易导致管片壁后同步注浆空洞的产生,此类缺陷对盾构隧道周围地层沉降及管片受力影响显著。文章依托工程实际,采用数值模拟方法分析了不同位置的空洞缺陷对地表沉降及管片变形的影响。结果表明:壁后注浆空洞无缺陷时,最大地表沉降、竖向收敛值、水平收敛值分别为4.98 mm、4.44 mm、-5.32 mm,而在出现空洞缺陷的情况中,拱顶的最大地表沉降、竖向收敛值、水平收敛值均为最小,分别为10.78 mm、13.52 mm、-16.23 mm,因此说明当出现空洞缺陷时,地表沉降和管片变形会受到很大不利影响。当空洞缺陷出现在隧道拱腰时,是所有空洞缺陷中引发地表沉降变形和盾构结构变形最大的情况,最大地表沉降、竖向收敛值、水平收敛值分别为18.81 mm、20.07 mm、-22.21 mm,比拱顶位置引起的变形分别大13.83 mm、15.63 mm、-16.89 mm。所以空洞缺陷位置出现在拱腰时对于结构力学特性和地表沉降最为不利。故在盾构隧道注浆施工过程中,应尽量保证隧道拱腰位置的壁后注浆填充率,使地表沉降及管片变形达到相应工程要求。  相似文献   

4.
为研究富水砂层地区盾构下穿对村民楼的影响,以某实际工程为依托,利用midas GTS NX有限元软件模拟盾构下穿村民楼的全过程,分析盾构掘进对地表沉降和建筑物不均匀沉降的影响。研究结果表明:地表最大沉降量出现在左线隧道中心线的正上方,最大沉降值为11.24 mm,开挖面离建筑物越近,建筑物受到的影响就越大,建筑结构的最大沉降量为12.42 mm,发生在建筑中部,最小沉降量为10.10 mm,发生在建筑最右侧,差异沉降为2.32 mm,均在可控范围内。  相似文献   

5.
盾构隧道旁穿建筑物地层沉降的数值模拟分析   总被引:1,自引:0,他引:1  
某双线盾构隧道近距离旁穿一幢12层高层建筑,为合理评估隧道施工对建筑物的影响,进行了考虑盾构动态施工及排桩加固的的远端(左线)、近端(右线)以及双线均开挖后隧道横断面及建筑物沉降的FLAC3D数值模拟分析,并对工程现场进行了沉降实测。数值模拟和实测结果表明:不采取加固措施,建筑物基础靠近隧道侧的最大沉降为5.2 mm,最大水平位移达25.8mm;基地土体出现拉剪破坏;数值模拟分析结果与现场实测结果较为一致;若采用排桩加固,建筑物基础靠近隧道侧的最大沉降为2.4 mm,最大水平位移不足10mm,基地土体未出现拉剪破坏;排桩加固能有效降低围岩变形及地表沉降,有利于建筑物的保护。  相似文献   

6.
为了确保下穿隧道施工时上部建筑物的安全稳定,需要对建筑物的变形进行监测,通过监测结果来反馈与指导施工,直至所采用的施工方案能确保建筑物的安全。针对福州至平潭铁路岱岭隧道下穿福州外语外贸学院隧道工程,使用精密水准仪对上部建筑物进行沉降监测;使用全站仪对上部建筑物进行倾斜监测。通过为期四个月的共22次的观测得到建筑物最大累计沉降为4.3mm,在后期监测时出现上升现象,致使最终累计沉降为3.5 mm;隧道开挖之前建筑物已存在最大倾斜0.268%,在隧道开挖后倾斜最大增加值为0.147%。  相似文献   

7.
隧道工程是我国公共交通线的重要组成部分,盾构法由于施工速度快、对周边扰动小、安全性较高等原因被广泛应用于隧道工程。通过有限元建模,模拟了盾构隧道开挖全过程的变形情况并通过现场的实测数据对数值模拟的结果进行进一步的验证。研究发现在盾构机掘进完成后,隧道中部管片和地表土体发生沉降,而隧道两端的管片发生上抬,且地表亦产生隆起现象。而将实测数据与数值模拟结果进行对比后发现,在开挖中部,管片变形与地表沉降实测值与数值模拟的结果较为接近,但在开挖隧道两端,管片变形与地表沉降实测值与数值模拟的结果存在一些偏差。  相似文献   

8.
通过离心模型试验模拟平行盾构隧道近接开挖施工,研究了盾构隧道近接开挖对既有隧道结构内力、管片变形和地表沉降的变化规律。结果表明:1隧道开挖引起地表沉降的大小与开挖的步骤有关,而沉降槽的范围基本不变;2既有隧道靠近新建隧道一侧受拉,这一侧弯矩出现负增量,侧向土压力也有一定的减小,且既有隧道直径水平向变大,而垂向直径基本不受影响;3由于土拱效应,新建隧道已完成开挖部分管片拱顶的土压力随开挖进程先减小后增大;4采用地层结构法可以准确模拟隧道开挖过程的隧道结构力学特性与变形规律。  相似文献   

9.
隧道CRD法施工对地表不同结构形式建筑物影响的对比分析   总被引:1,自引:0,他引:1  
隧道开挖施工必然会使地表产生沉降,从而对地表建筑物产生不利影响,且其影响随建筑物结构型式的不同而不同。本文针对厦门机场路梧村山隧道施工实际,对隧道上方框架结构和混合结构的建筑物变形及裂缝进行监测,分析隧道施工对地表不同结构型式、不同高度建筑物的影响。研究表明:连拱隧道CRD法施工中,掌子面CRD1~4开挖期间对混合结构沉降影响最大,掌子面CRD1~CRD5开挖期间对框架结构影响最大。框架结构抵御隧道施工引起环境变化的能力强于混合结构的;低层建筑抵御隧道施工引起环境变化的敏感度高于多层建筑的。  相似文献   

10.
隧道降水施工地表沉降的渗流-应力耦合分析   总被引:1,自引:0,他引:1  
根据有效应力分析方法,建立了弹塑性渗流–应力耦合分析理论模型;采用流体体积方法方法来跟踪非稳定渗流场的动态自由水面,开发相应的数值模拟分析程序;并对某地铁隧道工程的动态降水过程和开挖过程进行仿真模拟,对降水和开挖过程中的地表沉降进行重点分析,得出动态变化的地表沉降曲线,通过将地表沉降计算值与现场量测值比较分析,两者数据吻合较好。研究结果表明,降水的影响半径约为30m,降水所引起的地表最大沉降值约为23mm,左右隧道施工完时地表最大沉降值约为43mm,施工期间周围建筑物和地下管线均无安全隐患。而通常采用30mm的控制标准,说明城市地铁工程的沉降控制基准要视具体的工程环境条件而定,这为该工程和类似工程施工提供了依据和参考作用。  相似文献   

11.
以呼和浩特市轨道交通2号线一期工程公主府站—内蒙古体育场站区间盾构隧道施工为背景,考虑隧道-土体-基础的共同作用,运用三维有限元软件MIDAS GTS对盾构隧道近距离侧穿砌体结构建筑物进行数值模拟,分析采用深孔注浆技术后,盾构施工引起地表沉降和砌体建筑物的差异沉降,并与现场实测数据进行对比分析。模拟结果表明:采用深孔注浆加固后,地表最大沉降为9. 66mm,砌体建筑物的最大沉降为7mm,基础最大局部倾斜为0. 27‰,满足施工控制标准,证明深孔注浆加固技术可较好地控制地表沉降,保证砌体建筑物安全和正常使用。  相似文献   

12.
王航 《土工基础》2019,(1):19-22
结合苏州地铁4号线北侧某建筑基坑开挖,用Midas GTS有限元分析软件对基坑施工过程进行计算模拟,分析基坑开挖对地铁4号线区间隧道的影响。结果表明:基坑开挖过程对地铁区间隧道影响最大,基坑回筑过程地铁区间隧道变形较小。基坑开挖过程中地铁区间隧道竖向最大沉降量为1.51 mm,隧道水平向最大位移为6.32 mm;建筑基坑开挖过程中地表沉降最大值为2.5 mm,基坑坑底隆起最大值为20.3 mm,最大值发生在开挖至坑底阶段;围护结构变形和受力满足设计要求。  相似文献   

13.
为研究盾构隧道施工过程建模影响因素及其影响程度,首先,综合隧道开挖过程中盾构机前体与岩土体影响因素耦合作用分析,构建盾构隧道开挖过程仿真模型,给出地表沉降和隧道垂向应力;然后,进一步模拟去除其中一种因素的隧道开挖过程,求出相应的地表沉降和隧道垂向应力;最后,基于傅里叶变换对各种情况下地表沉降量和应力应变状况进行比较分析,找出各因素对建模的影响程度。结果表明:一方面,建模过程中各种因素对地表沉降的影响大于对隧道垂向压力影响;另一方面,盾构机推进给开挖面土体压力、盾尾灌浆延迟管片拼装造成的暂时性土体支撑力不足、盾构机刀盘转动给开挖面土体扭力等因素对模型解算造成的影响最大。本研究对提高盾构隧道施工过程建模的准确性和实效性,指导盾构隧道施工具有重要指导作用。  相似文献   

14.
以中原地区某地铁R4号线为工程实例,对盾构管片和周边土体的沉降时行了数值模拟,结果表明:联络通道及泵房开挖后盾构管片和周边土体均产生一定的沉降,其中盾构管片的最大沉降为1.2mm,地表土体的最大沉降为3.5mm。提出了针对性的小导管加固措施,并制定了详细的联络通道及泵房施工技术措施,为今后的类似工程提供了参考。  相似文献   

15.
隧道开挖扰动隧道上覆岩土层,原有的应力平衡状态发生破坏,导致地表发生移动和变形从而对周边建筑物产生影响.以某地铁隧道为例,应用ANSYS计算隧道开挖这一动态过程引起的地表沉降,分析地表沉降对周围环境尤其是建筑物的影响,并提出相应的防御解决措施,以此来减少隧道开挖对建筑物的影响.  相似文献   

16.
为研究新建盾构隧道上穿既有隧道时对下部隧道影响,以南昌某地铁出入线上穿既有盾构隧道工程为依托,结合小曲线半径隧道、盾构机超载等特殊工况,采用有限元进行模拟分析。研究结果表明:盾构机超载将导致既有隧道纵向呈凹槽型沉降变形,最大值约-9.7 mm,管片弯矩值较未开挖时增长34.3%;上部开挖卸载将导致既有隧道纵向呈隆起变形,最大值约8.7 mm,管片弯矩值较未开挖时略有减小;既有隧道在盾构机超载及开挖卸载两者耦合作用下,纵向变形呈“S”型曲线,最大隆起值与最大沉降值差值高达13.8 mm。针对上述分析,提出对既有隧道施加钢支撑环+拱顶注浆的加固措施,隧道最大变形值较未加固时减小44.8%,验证了该加固措施的有效性,对小曲线半径段施工控制重难点进行分析,并提出相应建议,以期为相关工程提供参考依据。  相似文献   

17.
 厦门机场路一期工程在大跨、浅埋及复杂地质等工程条件下穿越地表密集的建筑物群,受隧道施工影响的建筑物多达90余栋。在隧道施工过程中,既要保证新建隧道结构的安全,同时还要保证地表既有结构的安全,而后者显得更加重要。隧道施工面临着全风化花岗岩遇水软化、隧道结构整体沉降、地层大变形、建筑物差异沉降及裂缝控制等诸多难题。在对该工程特点和控制方案系统分析的基础上,为保证控制方案的可靠性,对拟拆迁的104#和105#楼房进行试验研究,通过施工过程的注浆抬升和变形监测结果,论述地层沉降、建筑物沉降及裂缝产生、发展随隧道开挖的变化规律,并提出优化洞内施工与地面注浆抬升建筑物相结合方案,控制围岩大变形和有效保护建筑物的工程措施。试验数据表明,将核心控制指标—建筑物差异沉降量控制在20 mm以内可保证建筑物的安全;地表注浆与洞内注浆相结合可实现对建筑物的抬升,并有效地减小建筑物的差异沉降并控制裂缝的发展。研究结果为机场路隧道后续穿越重点建筑物的施工提供了技术支撑和安全保障,也为今后类似工程的设计、施工和研究提供了有益的借鉴和参考。  相似文献   

18.
文章根据实际项目,结合项目工程进度及筹划,通过理论分析和数值模拟的手段,分析了叠落盾构区间开挖引起的地面沉降及新建项目封顶后盾构区间侧穿时其变形承受能力.数值模拟盾构掘进引起地表土体最终沉降量最大值为21.2 mm,受土体位移及变形传递的影响,建筑物的最大水平变形量为2.4 mm,最大沉降量为1.0 mm,最大差异沉降为0.1 mm,高层建筑物的倾斜值0.000 24,并与理论分析计算值相吻合,均满足建筑物变形保护要求.通过相互影响分析表明,新建项目能满足后期盾构隧道侧穿的控制保护标准,其对轨道交通盾构区间实施的影响可控.  相似文献   

19.
采用PLaxis3d对隧道管片透水条件下引起的地层长期沉降情况进行了研究分析。通过隧道施工完成瞬时地层的沉降云图、隧道施工完成瞬时地层中的超静孔隙水压力分布图等分析可知,管片透水诱发地层长期沉降主要是地层中的渗流场决定的。管片透水时造成的地表最大沉降约为不透水时的2倍,地表沉降槽宽度也约为管片不透水时的2倍。  相似文献   

20.
《Planning》2019,(2)
为分析软土地层小净距叠交隧道施工影响,以无锡地铁3号线出入段线隧道倾斜穿越长机区间及电力隧道为工程背景,使用FLAC3D5.0软件进行施工模拟,分析土仓处于不同欠压状态下土体及管片的变形及受力规律。结果表明:开挖引起的地表沉降随支护应力比的降低而增大,随土层深度增加土体沉降槽系数变小且量值增大;由于隧道处于倾斜叠交状态,开挖产生的应力释放导致隧道洞周土层位移出现不均匀变化,同时不同隧道施工对地表沉降存在叠加效应。不同支护压力比下电力隧道结构变形量值保持在10mm左右,支护压力比为0.53时新建隧道管片结构的变形量达到29mm,接近规范限制,在施工中应控制支护压力比不低于0.53,既有长—机区间隧道受力呈现先不利、后有利的变化趋势,电力隧道受力呈不利状态,施工时需密切关注。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号