首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quality of service (QoS) routing plays an important role in QoS provisioning for mobile ad hoc networks. This work studies the issue of route selection subject to QoS constraint(s). Our method searches for alternate routes with satisfied QoS requirement(s) to accommodate each communication request when the shortest path connecting the source–destination pair of the request is not qualified. In order to effectively reduce protocol overhead, a directed search mechanism is designed to limit the breadth of the searching scope, which aims at achieving a graceful tradeoff between the success probability in QoS route acquisition and communication overhead. Efficient hop‐by‐hop routing protocols are designed for route selection subject to delay and bandwidth constraint, respectively. Simulation results show that the designed protocols can achieve high performance in acquiring QoS paths and in efficient resource utilization with low control overhead. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
QoS issues in ad hoc wireless networks   总被引:25,自引:0,他引:25  
Ad hoc wireless networks consist of mobile nodes interconnected by multihop communication paths. Unlike conventional wireless networks, ad hoc networks have no fixed network infrastructure or administrative support. The topology of the network changes dynamically as mobile nodes join or depart the network or radio links between nodes become unusable. This article addresses some of the quality of service issues for ad hoc networks which have started to receive increasing attention in the literature. The focus is on QoS routing. This is a complex and difficult issue because of the dynamic nature of the network topology and generally imprecise network state information. We present the basic concepts and discuss some of the results. The article concludes with some observations on the open areas for further investigation  相似文献   

3.
Secure routing in mobile wireless ad hoc networks   总被引:3,自引:0,他引:3  
We discuss several well known contemporary protocols aimed at securing routing in mobile wireless ad hoc networks. We analyze each of these protocols against requirements of ad hoc routing and in some cases identify fallibilities and make recommendations to overcome these problems so as to improve the overall efficacy of these protocols in securing ad hoc routing, without adding any significant computational or communication overhead.  相似文献   

4.
Power-aware routing protocols in ad hoc wireless networks   总被引:5,自引:0,他引:5  
An ad hoc wireless network has no fixed networking infrastructure. It consists of multiple, possibly mobile, nodes that maintain network connectivity through wireless communications. Such a network has practical applications in areas where it may not be economically practical or physically possible to provide a conventional networking infrastructure. The nodes in an ad hoc wireless network are typically powered by batteries with a limited energy supply. One of the most important and challenging issues in ad hoc wireless networks is how to conserve energy, maximizing the lifetime of its nodes and thus of the network itself. Since routing is an essential function in these networks, developing power-aware routing protocols for ad hoc wireless networks has been an intensive research area in recent years. As a result, many power-aware routing protocols have been proposed from a variety of perspectives. This article surveys the current state of power-aware routing protocols in ad hoc wireless networks.  相似文献   

5.
In this paper, we discussed the issues of QoS multicast routing in cognitive radio ad hoc networks. The problem of our concern was: given a cognitive radio ad hoc network and a QoS multicast request, how to find a multicast tree so that the total bandwidth consumption of the multicast is minimized while the QoS requirements are met. We proposed two methods to solve it. One is a two‐phase method. In this method, we first employed a minimal spanning tree‐based algorithm to construct a multicast tree and then proposed a slot assignment algorithm to assign timeslots to the tree links such that the bandwidth consumption of the tree is minimized. The other is an integrated method that considers the multicast routing together with the slot assignment. Extensive simulations were conducted to show the performance of our proposed methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Huayi  Xiaohua   《Ad hoc Networks》2007,5(5):600-612
In this paper, we investigate the issues of QoS multicast routing in wireless ad hoc networks. Due to limited bandwidth of a wireless node, a QoS multicast call could often be blocked if there does not exist a single multicast tree that has the requested bandwidth, even though there is enough bandwidth in the system to support the call. In this paper, we propose a new multicast routing scheme by using multiple paths or multiple trees to meet the bandwidth requirement of a call. Three multicast routing strategies are studied, SPT (shortest path tree) based multiple-paths (SPTM), least cost tree based multiple-paths (LCTM) and multiple least cost trees (MLCT). The final routing tree(s) can meet the user’s QoS requirements such that the delay from the source to any destination node shall not exceed the required bound and the aggregate bandwidth of the paths or trees shall meet the bandwidth requirement of the call. Extensive simulations have been conducted to evaluate the performance of our three multicast routing strategies. The simulation results show that the new scheme improves the call success ratio and makes a better use of network resources.  相似文献   

7.
Scalable routing strategies for ad hoc wireless networks   总被引:17,自引:0,他引:17  
We consider a large population of mobile stations that are interconnected by a multihop wireless network. The applications of this wireless infrastructure range from ad hoc networking (e.g., collaborative, distributed computing) to disaster recovery (e.g., fire, flood, earthquake), law enforcement (e.g., crowd control, search-and-rescue), and military (automated battlefield). Key characteristics of this system are the large number of users, their mobility, and the need to operate without the support of a fixed (wired or wireless) infrastructure. The last feature sets this system apart from existing cellular systems and in fact makes its design much more challenging. In this environment, we investigate routing strategies that scale well to large populations and can handle mobility. In addition, we address the need to support multimedia communications, with low latency requirements for interactive traffic and quality-of-service (QoS) support for real-time streams (voice/video). In the wireless routing area, several schemes have already been proposed and implemented (e.g., hierarchical routing, on-demand routing, etc.). We introduce two new schemes-fisheye state routing (FSR) and hierarchical state routing (HSR)-which offer some competitive advantages over the existing schemes. We compare the performance of existing and proposed schemes via simulation  相似文献   

8.
Robust position-based routing for wireless ad hoc networks   总被引:1,自引:0,他引:1  
We consider a wireless ad hoc network composed of a set of wireless nodes distributed in a two dimensional plane. Several routing protocols based on the positions of the mobile hosts have been proposed in the literature. A typical assumption in these protocols is that all wireless nodes have uniform transmission regions modeled by unit disk centered at each wireless node. However, all these protocols are likely to fail if the transmission ranges of the mobile hosts vary due to natural or man-made obstacles or weather conditions. These protocols may fail because either some connections that are used by routing protocols do not exist, which effectively results in disconnecting the network, or the use of some connections causes livelocks. In this paper, we describe a robust routing protocol that tolerates up to roughly 40% of variation in the transmission ranges of the mobile hosts. More precisely, our protocol guarantees message delivery in a connected ad hoc network whenever the ratio of the maximum transmission range to the minimum transmission range is at most .  相似文献   

9.
By exploiting non-random behaviors for the mobility patterns that mobile users exhibit, we can predict the future state of network topology and perform route reconstruction proactively in a timely manner. Moreover, by using the predicted information on the network topology, we can eliminate transmissions of control packets otherwise needed to reconstruct the route and thus reduce overhead. In this paper, we propose various schemes to improve routing protocol performances by using mobility prediction. We then evaluate the effectiveness of using mobility prediction via simulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
QoS routing plays an important role for providing QoS in wireless ad hoc networks. The goals of QoS routing are in general twofold: selecting routes with satisfied QoS requirement(s), and achieving global efficiency in resource utilization. In this article we first discuss some key design considerations in providing QoS routing support, and present a review of previous work addressing the issue of route selection subject to QoS constraint(s). We then devise an on-demand delay-constrained unicast routing protocol. Various strategies are employed in the protocol to reduce the communication overhead in acquiring cost-effective delay-constrained routes. Simulation results are used to verify our expectation of the high performance of the devised protocol. Finally, we discuss some possible future directions for providing efficient QoS routing support in wireless ad hoc networks.  相似文献   

11.
12.
Minimum-power multicast routing in static ad hoc wireless networks   总被引:3,自引:0,他引:3  
Wieselthier et al. (2000) proposed three greedy heuristics for Min-Power Asymmetric Broadcast Routing: SPT (shortest-path tree), MST (minimum spanning tree), and BIP (broadcasting incremental power). Wan et al. (2001) proved that SPT has an approximation ratio of at least (n/2) where n is the total number of nodes, and both MST and BIP have constant approximation ratios. Based on the approach of pruning, Wieselthier et al. also proposed three greedy heuristics for Min-Power Asymmetric Multicast Routing: P-SPT (pruned shortest-path tree), P-MST (pruned minimum spanning tree), and P-BIP (pruned broadcasting incremental power). In this paper, we first prove that the approximation ratios of these three heuristics are at least (n-1/2),n-1, and n-2-o(1), respectively. We then present constant-approxiation algorithms for Min-Power Asymmetric Multicast Routing. We show that any /spl rho/-approximation Steiner tree algorithm gives rise to a c/spl rho/-approximation heuristic for Min-Power Asymmetric Multicast Routing, where c is a constant between 6 and 12. In particular, the Takahashi-Matsuyama Steiner tree heuristic leads to a heuristic called SPF (shortest-path first), which has an approximation ratio of at most 2c. We also present another heuristic, called MIPF (minimum incremental path first), for Min-Power Asymmetric Multicast Routing and show that its approximation ratio is between (13/3) and 2c. Both SPF and MIPF can be regarded as an adaptation of MST and BIP, respectively, in a different manner than pruning. Finally, we prove that any /spl rho/-approximation Steiner tree algorithm also gives rise to a 2/spl rho/-approximation algorithm for Min-Power Symmetric Multicast Routing.  相似文献   

13.
In this paper, we propose a cooperative approach for routing in wireless ad hoc networks. Our solution improves the interference distribution in the network, with an immediate positive impact on the throughput performance and energy efficiency. In determining new routes, we consider not only the cost associated with the current route, but also the potential interference impact of the route on the neighboring nodes.We use this cooperative approach to determine routes for CDMA ad hoc networks, which are known to be severely limited in performance by the near–far effect. Our simulation results using cooperative routing show an improvement in throughput of up to 60% compared to the classic minimum energy routing approach. This improvement is achieved at the expense of only a slight increase in the average energy per bit transmission for an end-to-end path.  相似文献   

14.
Scalable geographic routing algorithms for wireless ad hoc networks   总被引:1,自引:0,他引:1  
Frey  H. 《IEEE network》2004,18(4):18-22
The design of efficient routing protocols for dynamical changing network topologies is a crucial part of building power-efficient and scalable ad hoc wireless networks. If position information is available due to GPS or some kind of relative positioning technique, a promising approach is given by geographic routing algorithms, where each forwarding decision is based on the positions of current, destination, and possible candidate nodes in vicinity only. About 15 years ago heuristic greedy algorithms were proposed, which in order to provide freedom from loops might fail even if there is a path from source to destination. In recent years planar graph traversal has been investigated as one possible strategy to recover from such greedy routing failures. This article provides a tutorial for this class of geographic routing algorithms, and discusses recent improvements to both greedy forwarding and routing in planar graphs.  相似文献   

15.
Energy use is a crucial design concern in wireless ad hoc networks since wireless terminals are typically battery-operated. The design objectives of energy-aware routing are two folds: Selecting energy-efficient paths and minimizing the protocol overhead incurred for acquiring such paths. To achieve these goals simultaneously, we present the design of several on-demand energy-aware routing protocols. The key idea behind our design is to adaptively select the subset of nodes that are required to involve in a route-searching process in order to acquire a high residual-energy path and/or the degree to which nodes are required to participate in the process of searching for a low-power path in networks wherein nodes have transmission power adjusting capability. Analytical and simulation results are given to demonstrate the high performance of the designed protocols in energy-efficient utilization as well as in reducing the protocol overhead incurred in acquiring energy-efficient routes. Baoxian Zhang received his B.S., M.S., and Ph.D. degrees in Electrical Engineering from Northern Jiaotong University, Beijing, China in 1994, 1997, and 2000, respectively. From January 2001 to August 2002, he was working with Department of Electrical and Computer Engineering at Queen’s University in Kingston as a postdoctoral fellow. He is currently a research scientist with the School of Information Technology and Engineering (SITE) of University of Ottawa in Ottawa, Ontario, Canada. He has published over 40 refereed technical papers in international journals and conference proceedings. His research interests include routing algorithm and protocol design, QoS management, wireless ad hoc and sensor networks, survivable optical networks, multicast communications, and performance evaluation. He is a member of the IEEE. Hussein Mouftah joined the School of Information Technology and Engineering (SITE) of the University of Ottawa in September 2002 as a Canada Research Chair (Tier 1) Professor in Optical Networks. He has been with the Department of Electrical and Computer Engineering at Queen’s University (1979-2002), where he was prior to his departure a Full Professor and the Department Associate Head. He has three years of industrial experience mainly at Bell Northern Research of Ottawa, now Nortel Networks (1977-79). He has spent three sabbatical years also at Nortel Networks (1986-87, 1993-94, and 2000-01), always conducting research in the area of broadband packet switching networks, mobile wireless networks and quality of service over the optical Internet. He served as Editor-in-Chief of the IEEE Communications Magazine (1995-97) and IEEE Communications Society Director of Magazines (1998-99) and Chair of the Awards Committee (2002-2003). He is a Distinguished Speaker of the IEEE Communications Society since 2000. Dr. Mouftah is the author or coauthor of five books, 22 book chapters and more than 700 technical papers and 8 patents in this area. He is the recipient of the 1989 Engineering Medal for Research and Development of the Association of Professional Engineers of Ontario (PEO), and the Ontario Distinguished Researcher Award of the Ontario Innovation Trust. He is the joint holder of the Best Paper Award for a paper presented at SPECTS’2002, and the Outstanding Paper Award for papers presented at the IEEE HPSR’2002 and the IEEE ISMVL’1985. Also he is the joint holder of a Honorable Mention for the Frederick W. Ellersick Price Paper Award for Best Paper in the IEEE Communications Magazine in 1993. He is the recipient of the IEEE Canada (Region 7) Outstanding Service Award (1995). Also he is the recipient of the 2004 IEEE Communications Society Edwin Howard Armstrong Achievement Award, and the 2004 George S. Glinski Award for Excellence in Research of the Faculty of Engineering, University of Ottawa. Dr. Mouftah is a Fellow of the IEEE (1990) and Fellow of the Canadian Academy of Engineering (2003).  相似文献   

16.
Energy efficient broadcast routing in static ad hoc wireless networks   总被引:1,自引:0,他引:1  
In this paper, we discuss energy efficient broadcast in ad hoc wireless networks. The problem of our concern is: given an ad hoc wireless network, find a broadcast tree such that the energy cost of the broadcast tree is minimized. Each node in the network is assumed to have a fixed level of transmission power. We first prove that the problem is NP-hard and propose three heuristic algorithms, namely, shortest path tree heuristic, greedy heuristic, and node weighted Steiner tree-based heuristic, which are centralized algorithms. The approximation ratio of the node weighted Steiner tree-based heuristic is proven to be (1 + 2 ln(n - 1)). Extensive simulations have been conducted and the results have demonstrated the efficiency of the proposed algorithms.  相似文献   

17.
Numerous routing protocols have been proposed for wireless networks. A common assumption made by the majority of these protocols is that each wireless node will follow the prescribed protocol without any deviation. This may not be true in practice since wireless nodes could be owned by users who perform in their own interests. We then have to design routing protocols that still work properly even for networks composed of selfish nodes. In this paper, we propose a unicast routing protocol to address this issue under the assumption that all networking nodes are rational. Here, a node is rational if it always chooses a strategy that maximizes its benefit. We assume that each node has a privately known cost of relaying a unit of data for other nodes. In our protocol, each wireless node has to declare a cost for forwarding a unit of data. When a node wants to send data to the access point, it first computes the least cost path to the access point and then computes a payment to each node on this path. We present a pricing mechanism such that the profit of each relay node is maximized when it declares its true cost. We also give a time optimal method to compute the payment in a centralized manner. We then discuss in detail how to implement the routing protocol in the distributed manner. We conduct extensive simulations to study the ratio of the total payment over the total cost incurred by all relay nodes. We find that this ratio is small in practice. Our protocol works when the wireless nodes will not collude and we show that no truthful mechanism can avoid the collusion of any pair of two nodes. We also give a truthful mechanism when a node only colludes with its neighbors.  相似文献   

18.
Partitioning QoS management for secure tactical wireless ad hoc networks   总被引:1,自引:0,他引:1  
Addressing quality of service in military wireless ad hoc communication networks involves unique challenges due to imposed tactical requirements and,conditions, such as heterogeneous traffic with stringent-real-time and survivability requirements, mobile wireless nodes in hostile environments, and limited spectrum availability. Encryption adds another layer of complexity because of the partitioning of the network into plain text (unencrypted) and cipher text (encrypted) parts that, by definition, cannot communicate QoS information to one another. A typical communication shelter is composed of unencrypted LANs connected to a packet-encrypted backbone network. This article presents a partitioned QoS approach, focusing on QoS management at the unencrypted LAN that complements QoS management done at the encrypted backbone. Some of the unencrypted LAN QoS techniques being considered for the Warfighter Information Network-Tactical (the future Army tactical backbone network) are outlined.  相似文献   

19.
移动分布式无线网络中具有QoS保证的UPMA协议   总被引:10,自引:1,他引:10  
该文基于有效竞争预约接入、无冲突轮询传输的思想提出了支持节点移动性、多跳网络结构和服务质量(QoS)的依据用户妥善安排的多址接入(UPMA)协议。它大大提高了信道的使用效率,保证了发送节点能快速接入信道,同时,最大程度地保证所有实时业务的时延和带宽要求。最后,我们考察了它对Internet数据业务的支持性能。  相似文献   

20.
According to the disadvantages of real time and continuity for multimedia services in ad hoc networks, a delay constraint multipath routing protocol for wireless multimedia ad hoc networks, which can satisfy quality of service (QoS) requirement (QoS multipath optimized link state routing [MOLSR]), is proposed. The protocol firstly detects and analyzes the link delay among the nodes and collects the delay information as the routing metric by HELLO message and topology control message. Then, through using the improved multipath Dijkstra algorithm for path selection, the protocol can gain the minimum delay path from the source node to the other nodes. Finally, when the route is launched, several node‐disjoint or link‐disjoint multipaths will be built through the route computation. The simulation and test results show that QoS‐MOLSR is suitable for large and dense networks with heavy traffic. It can improve the real time and reliability for multimedia transmission in wireless multimedia ad hoc networks. The average end‐to‐end delay of QoS‐MOLSR is four times less than the optimized link state routing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号