首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large increases in the latchup holding voltage are demonstrated with the use of shallow source-drain junctions in a sub-0.5 μm CMOS process. Holding voltages well above the supply voltage for 2 μm n +/p+ spacings are demonstrated without the use of complex processes such as retrograde wells or buried layers. SIMS data is presented to verify the reduction in junction depths to 0.15 μm for the p+/n-well and 0.14 μm for the n+/p-well junction. The improvement in holding voltage is attributed to reductions in parasitic bipolar transistor gains, due to the increase in base width. Well behaved transistor characteristics are presented using the shallow junction technology  相似文献   

2.
A new technology for forming a titanium-silicide shallow junction by combining germanium implantation with an amorphous-silicon (or a poly-silicon) buffer layer has been proposed for MOSFETs. The use of a buffer layer between Ti and Si can avoid the consumption of bulk-silicon and the recession of TiSi2 film into the source/drain junctions during the silicidation process. In this study, the important role of germanium-implantation on the formation of TiSi2 contacted p+/n junctions was examined. After subsequent implantation of Ge+ and B+ into the TiSi2 film, samples were annealed at different temperatures to form p +/n junctions and C54-TiSi2. Since the penetration of titanium atoms was suppressed due to the germanium-implantation, the periphery leakage and the generation leakage were improved and TiSi2/Si interfaces were even smooth. Therefore, p+/n junctions with a very low leakage current (0.192 nA/cm 2 at -5 V) and an excellent forward ideality factor (n≈1.002) can be obtained. From the secondary ion mass spectrometry (SIMS) analysis, the junction depth is 400  相似文献   

3.
We demonstrate a new and improved borderless contact (BLC) Ti-salicide process for the fabrication of sub-quarter micron CMOS devices. A low-temperature chemical vapor deposition (CVD) SiOx Ny film to act as the selective etching stop layer and the additional n+ and p+ source-drain double implant structure (DIS) are employed in the studied device. The additional n+ and p+ DIS can reduce the junction leakage current, which is usually enhanced by BLC etching near the edge of shallow trench isolation (STI). The process window is enlarged. Furthermore, the employed low-thermal oxynitride and high deposition rate can improve the salicide thermal stability and avoid the salicide agglomeration  相似文献   

4.
A low-resistance self-aligned Ti-silicide process featuring selective silicon deposition and subsequent pre-amorphization (SEDAM) is proposed and characterized for sub-quarter micron CMOS devices. 0.15-μm CMOS devices with low-resistance and uniform TiSi2 on gate and source/drain regions were fabricated using the SEDAM process. Non-doped silicon films were selectively deposited on gate and source/drain regions to reduce suppression of silicidation due to heavily-doped As in the silicon. Silicidation was also enhanced by pre-amorphization, using ion-implantation, on the narrow gate and source/drain regions. Low-resistance and uniform TiSi2 films were achieved on all narrow, long n+ and p+ poly-Si and diffusion layers of 0.15-μm CMOS devices. TiSi2 films with a sheet resistance of 5 to 7 Ω/sq were stably and uniformly formed on 0.15-μm-wide n+ and p+ poly-Si. No degradation in leakage characteristics was observed in pn-junctions with TiSi2 films. It was confirmed that, using SEDAM, excellent device characteristics were achieved for 0.15-μm NMOSFET's and PMOSFET's with self-aligned TiSi2 films  相似文献   

5.
An advanced 0.5-μm CMOS disposable lightly doped drain (LDD) spacer technology has been developed. This 0.5-μm CMOS technology features surface-channel LDD NMOS and PMOS devices, n+/p+ poly gates, 125-A-thick gate oxide, and Ti-salicided source/drain/gate regions. Using only two masking steps, the NMOS and PMOS LDD spacers are defined separately to provide deep arsenic n+ regions for lower salicided junction leakage, while simultaneously providing shallow phosphorus n- and boron p- regions for improved device short-channel effects. Additionally, the process allows independent adjustment of the LDD and salicide spacers to optimize the LDD design while avoiding salicide bridging of source/drain to gate regions. The results indicate extrapolated DC hot-carrier lifetimes in excess of 10 years for a 0.3-μm electrical channel-length NMOS device operated at a power-supply voltage of 3.3 V  相似文献   

6.
An 0.8-μm n-channel MOSFET with a TiSi2-Si Schottky clamped drain-to-body junction (SCDR) and an n+ implanted standard source structure have been fabricated in a conventional 0.8-μm salicide CMOS process without any process modifications. The SCDR should be useful for reducing susceptibility for latch-up in integrated CMOS RF power amplifiers and switches where drain to p-substrate junctions can be forward biased during normal operations. Output I-V characteristics of the devices are the same as those of conventional MOSFETs, while parasitic lateral n+-drain/p-substrate/n+-source bipolar transistor measurements showed significantly reduced current gains because the Schottky barrier diode which does not inject minority carriers (electrons) to the p-substrate base clamps the n+ drain-to-p-substrate guard-ring diode connected in parallel  相似文献   

7.
A technique for forming shallow junctions with low-resistance silicide contacts developed for the use in VLSI with scaled MOSFETs is discussed. The salicide (self-aligned silicide) MOSFET gate and source-drain features self-aligned refractory metal silicide and are isolated from one another even without any insulating spacer on the gate sides. A critical step in such a MOSFET fabrication process is the ion implantation through metal silicidation technique, which includes As+ ion-beam-induced titanium-silicon interface mixing and infrared rapid heat treatment to form simultaneously the n+-p junction and a high-quality TiN covered TiSi2 contact layer  相似文献   

8.
CMOS has become one of the most important technologies for VLSI applications. If the conventional n+polysilicon gate approach is to be maintained for VLSI CMOS, the p-channel transistor will cause problems in scaling down to submicrometers due to the counter-doping that is necessary to adjust the threshold voltage to a reasonable value. The depth of the p+source-drain junctions will also cause short-channel effects. This paper presents in-depth analysis of the submicrometer p-channel transistor structure. The effects of the counter-doping junction depth and the source-drain junction depth on the device subthreshold characteristics are discussed. Criteria for the submicrometer p-channel transistor structure with good subthreshold characteristics are presented. A new technique for minimizing the counter-doping junction depth is also presented. Submicrometer p-channel transistors with n+polysilicon gate were fabricated using this new technique as well as techniques for forming very shallow p+-junctions. Devices with submicrometer channel lengths showed very good subthreshold characteristics, as predicted by simulations.  相似文献   

9.
Bandgap-engineered W/Si1-xGex/Si junctions (p+ and n+) with ultra-low contact resistivity and low leakage have been fabricated and characterized. The junctions are formed via outdiffusion from a selectively deposited Si0.7Ge 0.3 layer which is implanted and annealed using RTA. The Si 1-xGex layer can then be selectively thinned using NH4OH/H2O2/H2O at 75°C with little change in characteristics or left as-deposited. Leakage currents were better than 1.6×10-9 A/cm2 (areal), 7.45×10-12 A/cm (peripheral) for p+/n and 3.5×10-10 A/cm2 (peripheral) for n+/p. W contacts were formed using selective LPCVD on Si1-xGex. A specific contact resistivity of better than 3.2×10-8 Ω cm2 for p +/n and 2.2×10-8 Ω cm2 for n+/p is demonstrated-an order of magnitude n+ better than current TiSi2 technology. W/Si1-xGe x/Si junctions show great potential for ULSI applications  相似文献   

10.
Ultra-shallow p+/n and n+/p junctions were fabricated using a Silicide-As-Diffusion-Source (SADS) process and a low thermal budget (800-900°C). A thin layer (50 nm) of CoSi2 was implanted with As or with BF2 and subsequently annealed at different temperatures and times to form two ultra-shallow junctions with a distance between the silicide/silicon interface and the junction of 14 and 20 nm, respectively. These diodes were investigated by I-V and C-V measurements in the range of temperature between 80 and 500 K. The reverse leakage currents for the SADS diodes were as low as 9×10 -10 A/cm2 for p+/n and 2.7×10-9 A/cm2 for n+/p, respectively. The temperature dependence of the reverse current in the p +/n diode is characterized by a unique activation energy (1.1 eV) over all the investigated range, while in the n+/p diode an activation energy of about 0.42 eV is obtained at 330 K. The analysis of the forward characteristic of the diodes indicate that the p+ /n junctions have an ideal behavior, while the n+/p junctions have an ideality factor greater than one for all the temperature range of the measurements. TEM delineation results confirm that, in the case of As diffusion from CoSi2, the junction depth is not uniform and in some regions a Schottky diode is observed in parallel to the n+/p junction. Finally, from the C-V measurements, an increase of the diodes area of about a factor two is measured, and it is associated with the silicide/silicon interface roughness  相似文献   

11.
The optimization of a manufacturable self-aligned titanium silicide process is described. In particular, the integrity of the TiSi 2 layer has been studied versus the BPSG reflow conditions. Excellent contact resistance and very low leakage currents have been obtained. The good device parameters obtained with an n+ or n +/p+ gate have demonstrated that the self-aligned process can be integrated in a 0.8-μm double-metal CMOS process  相似文献   

12.
Plasma immersion ion implantation (PIII) is an efficient method for fabricating high-quality p+/n diodes with junction depths below 100 nm. SiF4 is implanted to create an amorphous Si layer to retard B channeling and diffusion, and then BF3 is implanted. Ultrashallow p+/n junctions are formed by annealing at 1060 °C for 10 s. With the shallow implants, no extended defects are observed in device or peripheral areas due to rapid outdiffusion of fluorine. Diode electrical characteristics yield forward ideality factor of 1.05-1.06 and leakage current density below 2 nA/cm 2 in the diode bulk. Minority-carrier lifetime below the junction is greater than 250 μs  相似文献   

13.
A new technology of self-aligned TiN/TiSi2 formation using N2+ implantation during two-step annealing Ti-salicidation process has been developed. The formation of TiN was confirmed by RBS analysis. The leakage currents of n+/p junction diodes fabricated using this technology were measured to investigate the phenomena of Al spiking into Si-substrate. The measured reverse-bias leakage current of diode per unit junction area with Al/TiN/TiSi2 contact is 1.2 nA/cm2 at -5 V, which is less than all of reported data. Also it can sustain the annealing process for 30 min at 500°C. Thus, TiN formed with this technology process is suggested as a very effective barrier layer between TiSi2 and Al for submicron CMOS technology applications  相似文献   

14.
The electrical characteristics of ultra-shallow p+/n junctions formed by implanting a 60 keV Ge+ into a TiSi2 layer have been studied. A very low reverse leakage current density (≅0.4 nA/cm2 at -5 V) and a very good forward ideality factor n (≅1.001) were achieved in these ultra-shallow p +/n junctions. From the secondary ion mass spectrometry (SIMS) analysis, the junction depth was measured to be 600 Å and the surface concentration was about 3 times higher than that of the conventional samples  相似文献   

15.
This work investigates the shallow CoSi2 contacted junctions formed by BF2+ and As+ implantation, respectively, into/through cobalt silicide followed by low temperature furnace annealing. For p+n junctions fabricated by 20 keV BF2+ implantation to a dose of 5×1015 cm-2, diodes with a leakage current density less than 2 nA/cm2 at 5 V reverse bias can be achieved by a 700°C/60 min annealing. This diode has a junction depth less than 0.08 μm measured from the original silicon surface. For n+p junctions fabricated by 40 keV As+ implantation to a dose of 5×1015 cm-2, diodes with a leakage current density less than 5 nA/cm2 at 5 V reverse bias can be achieved by a 700°C/90 min annealing; the junction depth is about 0.1 μm measured from the original silicon surface. Since the As+ implanted silicide film exhibited degraded characteristics, an additional fluorine implantation was conducted to improve the stability of the thin silicide film. The fluorine implantation can improve the silicide/silicon interface morphology, but it also introduces extra defects. Thus, one should determine a tradeoff between junction characteristics, silicide film resistivity, and annealing temperature  相似文献   

16.
The characteristics of polysilicon resistors in sub-0.25 μm CMOS ULSI applications have been studied. Based on the presented sub-0.25 μm CMOS borderless contact, both n+ and p+ polysilicon resistors with Ti- and Co-salicide self-aligned process are used at the ends of each resistor. A simple and useful model is proposed to analyze and calculate the essential parameters of polysilicon resistors including electrical delta W(ΔW), interface resistance Rinterface, and pure sheet resistance Rpure . This approach can substantially help engineers in designing and fabricating the precise polysilicon resistors in sub-0.25 μm CMOS technology  相似文献   

17.
A new process for thin titanium self-aligned silicide (Ti-SALICIDE) on narrow n+ poly-Si lines and n+ diffusion layers using preamorphization implantation (PAI) with heavy ions of antimony (Sb) and germanium (Ge) has been demonstrated for application to 0.2-μm CMOS devices and beyond. Preamorphization enhances the phase transformation from C49TixSi x to C54TiSi2 and lowers the transformation temperature by 80°C so that it occurs before conglomeration in narrow lines. Preamorphization by Sb and Ge implantation yields better results than that by As. The sheet resistance of TiSi2 on heavily As doped poly-Si lines are 3.7 Ω/□ and 3.8 Ω/□ for the samples preamorphized by Ge and Sb implantations even with line width down to 0.2 μm. There is less leakage in the Ti-SALICIDE diode with preamorphization than without it. The probable reasons and mechanisms are discussed  相似文献   

18.
The performance of diodes fabricated on n-type and p-type Si substrates by implanting As or B through a low-resistivity titanium-silicide layer is discussed. The effects of varying the implant dose, energy, and postimplant thermal treatment were investigated. After implantation, a rapid thermal anneal was found to remove most of the implant damage and activate the dopants, which resulted in n+-p and p+-n junctions under a low-resistivity silicide layer. The n+-p junctions were as shallow as 1000 Å with reverse leakage currents as low as 5.5 μA/cm2. A conventional furnace anneal resulted in a further reduction of this leakage. Shallow p+-n junctions could not be formed with boron implantation because of the large projected range of boron ions at the lowest available energy. Ti silicide films thinner than 600 Å exhibited a sharp rise in sheet resistivity after a furnace anneal, whereas thicker films exhibited more stable behavior. This is attributed to coalescence of the films. High-temperature furnace annealing diffused some of the dopants into the silicide film, reducing the surface concentrations at the TiSi2 -Si interface  相似文献   

19.
A buried-channel p-MOSFET with a large-tile-angle implanted punchthrough stopper (LATIPS) is described. In this device the n+ LATIPS region was successfully realized adjacent to the p+ source/drain, even without a sidewall spacer, by taking advantage of the n+ large-tilt-angle implant. In spite of the relatively deep p+ junction of 0.2-μm depth and the low n-well concentration of 1×1016 cm-3, the 0.5-μm LATIPS device (with corresponding channel length of 0.3 μm) achieved high punchthrough resistance, e.g. a low subthreshold swing of 95 mV/decade with a high transconductance of 135 mS/mm  相似文献   

20.
Ultra-shallow p+/n and n+/p junctions were fabricated using SADS (silicide-as-diffusion-source) and ITS (ion-implantation-through-silicide processing) of 45-nm CoSi2 films (3.5 Ω/□) using a low thermal budget. The best junctions of either type were made by moderate 10-s RTA (rapid thermal annealing) at 800°C, where the total junction depth, counting the silicide thickness, is believed to be under 60 nm. Diffusion-limited current predominated down to 50°C in junctions made under these conditions. The initial implantation energy had only a minor effect on the junction leakage, where shallower implants required slightly higher temperatures to form low leakage diodes, resulting in diodes which were somewhat more susceptible to shorting during silicide agglomeration at high temperatures. The ITS scheme, where dopant is implanted slightly beyond the silicide, gives an equally low leakage current. Nevertheless, the ITS scheme gives deeper junctions than the SADS process, and it is difficult to control the position of the ITS junction due to silicide/silicon interface fluctuations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号