首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
自发渗吸为致密油藏提高采收率的主要方式,但常规驱油所用的表面活性剂易被岩石吸附,吸附损失较大,在苛刻油藏中不能满足强化采油的使用要求,提高自发渗吸采收率效果不明显。以环辛烷、脂肪醇聚氧乙烯醚类乳化剂、乙二醇、三乙醇胺为原料,制得以有机相为内相、表面活性剂为壳膜的纳米微乳液。通过界面张力及润湿反转实验揭示了其驱油机理,通过自发渗吸实验验证了提高采收率效果。结果表明,0.3%的纳米微乳液体系粒径尺寸约为10 nm,油水界面张力为3.56 m N/m,可将油湿石英片表面的润湿性(130.6°)反转为水湿表面(11.7°),具有良好的润湿反转能力。岩心在该乳液中的最终自发渗吸采收率为43.2%,约为水的2.4倍,自发渗吸提高采收率效果显著。  相似文献   

2.
为了研究致密砂岩储层表面活性剂的渗吸作用机理,首先研究了4种不同类型的表面活性剂润湿性反转能力与降低界面张力能力,并开展了表面活性剂渗吸实验;结合核磁共振测试与高压压汞实验表征了岩心微观孔隙特征,并在渗吸过程中进行核磁共振测试,研究了不同岩心孔隙类型的渗吸作用机理。研究表明:阴离子表面活性剂润湿性反转与降低界面张力的能力更强,且润湿性改变是提高渗吸采收率的关键。致密砂岩孔隙类型为纳米孔(r <0.1μm)、微孔(0.1μm 10μm),其中微孔为原油主要储存空间,孔隙体积占比达67.7%;宏孔的渗吸采收率最大,其次为微孔、纳米孔。阳离子活性剂CTAB、两性离子表面活性剂BS-12对渗吸具有抑制作用,非离子表面活性剂APG-12的渗吸效果同样较差;阴离子表面活性剂SDS、AES润湿性改变效果最好。对于致密岩石亲水润湿的质量分数为0.1%表面活性剂溶液,润湿时间(AES相似文献   

3.
界面张力和岩石润湿性是影响毛细管压力大小的决定性因素,因此研究表面活性剂对这两个因素的影响,可以充分发挥渗吸作用、提高低渗透油田原油的渗吸采收率。利用7块不同渗透率的亲水人造岩心,通过渗吸试验、旋滴法和动态接触角法研究了表面活性剂对油水界面张力、水湿表面润湿性、毛细管压力以及渗吸采收率的影响。试验结果发现:随着表面活性剂RS-1质量分数的增大,油水界面张力先有较大幅度降低后略有升高,最后趋于平稳;表面活性剂具有很强的改变水湿表面润湿性的能力,且能降低毛细管压力、提高渗吸采收率。研究结果表明:表面活性剂降低界面张力效果明显,并且复配表面活性剂降低界面张力的效果比单一活性剂好,岩样渗吸采收率与油水界面张力和毛细管压力的对数呈线性负相关关系。   相似文献   

4.
超低渗油藏开发主要靠压裂渗吸开采基质原油,但通常水驱渗吸采收率低,而表面活性剂复配可以提高渗吸采收率。通过对复配体系的性能分析,探讨表面活性剂体系复配对超低渗油藏渗吸采收率的影响规律。针对阴离子表面活性剂HABS、非离子表面活性剂APG1214及两者复配体系,采用渗吸瓶试法测定不同体系处理岩心的渗吸采收率效果;研究了渗吸体系与原油之间的界面张力、岩心经渗吸体系浸泡前后的接触角变化、体系乳状液稳定性3种因素对采收率的影响。结果表明,岩心在复配体系中的自发渗吸采收率最高(10.43%),而HABS体系仅为4.57%,KCl体系只有2.2%,APG1214体系不能发生渗吸。复配体系与原油间的界面张力能达到10-2mN/m数量级,并可将强水湿岩心转变为润湿角接近90o的弱亲油岩心,同时复配体系易与油生成乳液且乳液易聚并。岩心驱油实验中,复配体系的注入压力最小,采收率增幅最大。超低渗油藏渗吸采油率的提高需要低界面张力、偏中性润湿的超低渗岩心,易生成可聚并的乳状液,乳状液过于稳定不利于渗吸采油。图4表2参16  相似文献   

5.
大庆外围致密油藏原油储量十分丰富,但由于缺乏有效开发技术手段,储量动用程度较低。渗吸采油是(弱)亲水致密油藏高效开发的重要技术措施之一。为获得弱亲水致密油藏的高效开采技术,本文分别考察了阴/非离子型表面活性剂"HLX"、"SYH(石油磺酸盐)+Na_2CO_3"、阳离子型表面活性剂"YANG"和非离子表面活性剂"DCY"渗吸液对渗透率Kg2.0×10~(-3)μm~2左右的弱亲水岩心的渗吸采油效果。研究表明,渗吸采收率与渗吸速度不仅受油水界面张力影响,还受岩石孔隙润湿性影响。渗吸采油物理模拟实验结果表明,"YANG"和"DCY"渗吸液兼顾了改变岩石孔隙表面润湿性和降低界面张力两方面功效,因而渗吸采油效果较好,采收率增幅较大。考虑到"YANG"为阳离子型表面活性剂,在储层岩石孔隙内吸附量较大,渗吸采油效果会因此有所降低,故推荐使用"DCY"渗吸液体系,质量分数以0.3%为宜。  相似文献   

6.
水驱后油湿性/混合润湿性的碳酸盐岩裂缝油藏的采收率很低。研究的稀释表面活性剂方法可以提高碳酸盐岩裂缝油藏的采收率。本文研究了稀释的含碱阴离子表面活性剂溶液与碳酸盐岩矿石表面原油的相互作用关系。分别做了润湿性、相行为、界面张力和吸附试验。对于西得克萨斯原油,阴离子表面活性剂将方解石表面润湿性改变为中性/水湿条件的性能要优于阳离子表面活性剂DTAB。所有的碳酸盐岩(石印灰岩、大理石、白云石、方解石)表面在阴离子表面活性剂作用下都表现出类似的润湿性改变。也识别出阴离子表面活性剂与原油间具有非常低的界面张力值(<10-2mN/m),碱的添加可以大大降低磺酸盐表面活性剂的吸附。  相似文献   

7.
裂缝性油藏低渗透岩心自发渗吸实验研究   总被引:8,自引:4,他引:4  
裂缝性低渗透油藏注水开发时,注入水沿裂缝窜流,油井含水率高,地下注水波及效果差,油层水淹后仍有大量原油滞留在基质岩块中.渗吸排油是裂缝性低渗透油藏重要的采油机理,为研究各种因素对渗吸效果的影响,采用胜利油区纯梁采油厂天然低渗透岩心,通过在地层水和表面活性剂溶液中的自发渗吸实验,研究了润湿性、温度、粘度、界面张力等因素对渗吸的影响规律.实验结果表明:温度不是影响渗吸的直接因素,而是通过改变模拟油的粘度来间接影响渗吸;润湿性、模拟油粘度以及界面张力是影响自发渗吸的主要因素,岩石越亲水,模拟油粘度越低,渗吸采收率越高;对于亲水岩心,渗透率和界面张力控制着渗吸发生的方式;不同渗透率级别对应一个最佳的界面张力范围,在该范围内,渗吸的采收率最高;对于亲水—弱亲水岩心,岩心渗透率越大,所对应的最佳界面张力越低.  相似文献   

8.
《石油化工》2019,48(11):1157
采用不同类型的表面活性剂进行自发渗吸实验,并对表面活性剂改善岩石润湿性、降低界面张力的能力进行了分析。实验结果表明,阴离子型表面活性剂改善润湿性的能力好于其他类型的表面活性剂,且在岩心中的自发渗吸效果最好,这是由于阴离子型表面活性剂改善润湿性的机理为离子对形成机理,强于阳离子的吸附机理;接触角是决定渗吸能否发生的决定性因素,只有接触角小于70°时渗吸才能发生;界面张力影响渗吸速度和最终采出程度,对于渗透率为1 mD的岩心,最佳界面张力为10~(-1) mN/m。  相似文献   

9.
为明确不同界面性质对提高采收率作用效果和机理的影响,以长6 低渗致密储层为研究对象,选用两种具 有不同界面性质的自制表面活性剂体系S1(改善润湿性能力强)和S2(超低界面张力),分别用核磁共振方法表 征其静态渗吸和动态渗吸效果,并采用2.5 维微观模型研究其驱油过程,分析了具有不同界面性质表面活性剂体 系的提高采收率作用效果和作用机理。结果表明,S1 和S2 均具有较好的增采效果,渗吸为水进入小孔隙将油置 换到大孔隙的过程,表面活性剂可大幅促进小孔隙采出;驱油时形成优势通道明显,可实现润湿反转,存在附加 渗吸作用,大幅增大波及体积和洗油效率,并能将原油分散为小尺度状态。改善润湿性能力更强的S1 的毛细管 动力更大,对小孔隙的动用程度更高,但采出速度较慢,驱替时存在的附加渗吸作用更强;可实现超低界面张力 的S2油相流动阻力更小,渗吸速度快,采收率可更快达到平衡。  相似文献   

10.
注水吞吐作为致密油藏开采的一种经济、有效方法,已成功应用于各大油田。表面活性剂可提高致密油采收率,其作用机理尚需深化研究。研究将吞吐过程分为渗吸采油和反向驱替采油阶段,阐述表面活性剂对其作用规律。结果表明,在渗吸采油阶段,表面活性剂降低了渗吸采收率,但减小了原油从岩石表面剥离难度。在反向驱替采油阶段,表面活性剂可有效提高驱替采收率,同时大幅降低驱替压力。两性表面活性剂表现最佳,在清水的基础上提高采收率约5.00%,降低驱替压力7.00 MPa。其主要机理为降低界面张力、改变润湿性,减小原油从岩石表面剥离难度;减小毛管力和贾敏效应阻力,降低驱替压力。结果为表面活性剂在致密油藏注水吞吐的现场应用提供了理论依据。  相似文献   

11.
润滑油抽出油制取橡胶填充油的研究   总被引:2,自引:0,他引:2  
以糠醛为溶剂对抚顺石油一厂减五线馏分油溶剂精制的抽出油进行抽提,制备了橡胶填充油.考察了抽提温度和剂油质量比对产物收率和质量的影响.研究结果表明,当剂油质量比一定时,温度升高,产物收率上升,芳烃含量下降;当温度一定时,随着剂油质量比的增大,产物收率上升,而芳烃含量先上升后下降.综合考虑产物质量和收率,本实验范围内较适宜的操作条件为:抽提温度80 ℃,剂油质量比3.0.在此条件下,产物收率为63%,芳烃含量为58.84%.  相似文献   

12.
本文对中原混合原油生产润滑油,从常减压蒸馏到溶剂脱蜡、酸碱精制及白土补充精制等生产过程进行了阐述,并与川中原油生产润滑油进行了比较。  相似文献   

13.
以地沟油为原料,通过高温热裂解得到高酸值85mg(KOH)/g的裂解油,进而通过催化酯化反应降低热裂解油的酸值。讨论了催化剂种类、甲醇用量等因素对酯化率的影响。结果表明,以自制的S2O8^2-/ZrO2固体超强酸作催化剂,甲醇用量(以裂解油质量计)为30%时,酯化效果最好,可以使裂解油酸值降至2mg(KOH)/g。还考察了催化剂的使用寿命,结果表明,催化剂使用到第3次时,酯化率仍可达到84.8%。酯化后裂解油的燃料油性能有所改善。  相似文献   

14.
根据喷油螺杆空气压缩机的性能特点,采用加氢基础油研制开发了DAH喷油螺杆压缩机油,介绍了喷油螺杆压缩机的实际使用情况,并对选油条件提出了具体要求。  相似文献   

15.
于志东  张文杰 《石化技术》2013,(4):31-35,39
介绍了使用大庆原油掺混50%萨里尔原油试生产润滑油基础油期间,各装置的加工情况并对产品性能指标进行了对比。萨里尔原油酸值小,硫、氮含量较低,属于轻质低硫石蜡基原油,适宜生产润滑油基础油。试生产结果表明:通过优化装置的操作条件,减二线可以生产黏度指数大于90的满足HVIIb等级要求的润滑油基础油,减三线可以生产黏度指数大于80的满足HVIIa等级要求的润滑油基础油。  相似文献   

16.
为降低运行成本,提高"三低"油井开发效益,通过对影响高凝油捞油因素进行分析,解决了高凝油井化学降粘、抽子能满足在复合套管内捞油的需要、弹性泄油技术、捞油车适合沈一区高凝油(67℃)大负荷捞油需要等四大难题,使高凝油井可顺利实现捞油作业.  相似文献   

17.
《中国油气》2004,11(3)
China Aviation Oil (Singapore) announced an acquisition of a 20.6 percent stake in Singapore Petroleum Company (SPC) from Satya Capital Inc Ltd, the largest investment the company has ever made in its history. China Aviation Oil (Singapore),which is the largest Chinese enterprise Singapore,will become the second largest shareholder of SPC after the acquisition.  相似文献   

18.
油品蒸发及回收   总被引:6,自引:0,他引:6  
油品的蒸发不仅损失了大量的宝贵能源,降低了油品质量,而且增加了火灾危险性,污染了自然环境。如何控制油品的蒸发及有效地回收油蒸气都是急需解决的难题。分析了油品在运输、储存、收发、加注过程中蒸发损耗产生的方式和过程,重点介绍了吸附法、吸收法、冷凝法和膜分离法四种油气回收方法的工艺流程和技术要点,并分析了它们的优缺点和各自适用的范围。  相似文献   

19.
Miao Bin 《中国油气》2005,12(2):60-61
SinoCanada, a subsidiary of Sinopec International Petroleum Exploration and Development Corporation, and Canada-based Synenco Energy Inc announced on May 31 that they have inked a series of agreements to launch a joint venture for common development of the oil sand project located in Athabasca region of Northeast Canada's Alberta Province. Based on the agreements, Sinopec will pay 105 million Canadian dollars (USS84 million) for a stake in Canada's Northern Lights oil sands project while Synenco owns the remaining 60 percent share, and will operate the project as the managing partner.  相似文献   

20.
The problem of using electric insulating oils in underwater oil production equipment is examined. The results of comparative studies of the physicochemical and insulating properties and thermooxidative stability of domestic and foreign oils of this class are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号