共查询到19条相似文献,搜索用时 156 毫秒
1.
2.
以乙酸铜(Cu(CH3COO)2·H2O)、乙酸锌(Zn(CH3COO)2·H2O)、氯化亚锡(SnCl2·2H2O)、硫脲(CH4N2S)为原料,按一定配比制得前驱体溶液,以三乙醇胺(C6H15NO3)、乙醇胺(C2H7NO)为稳定剂采用溶胶-凝胶法旋涂制备铜锌锡硫(Cu2ZnSnS4)薄膜。通过扫描电镜(SEM)、X射线衍射仪(XRD)、X射线能谱分析(EDS)、紫外-可见-近红外分光光度计表征手段对薄膜的表面形貌、物相结构、成分组成和光学性能等进行分析。研究烧结温度、旋涂转速、稳定剂加入等工艺参数对铜锌锡硫(CZTS)薄膜的形貌、物相结构及光学性能的影响规律。结果表明,前驱体溶液浓度为0.2 mol/L,旋涂速度... 相似文献
3.
采用溶胶–凝胶后硒化法制备了铜锌锡硫硒薄膜, 其薄膜表面平整、无裂纹。通过简化铜锌锡硫前驱体溶胶的制备以及后退火时避免使用硫化氢气体(H2S)等方法使铜锌锡硫硒薄膜的制备工艺得到简化。选用低毒有机物乙二醇为溶剂,Cu(CH3COO)2、Zn(CH3COO)2、SnCl2•2H2O和硫脲为原料, 制备铜锌锡硫前驱体溶胶。XRD、Raman、EDX和SEM 分析表明制备的铜锌锡硫硒薄膜为锌黄锡矿结构, 所有薄膜均贫铜富锌, 用0.2 g硒粉、硒化20 min得到的铜锌锡硫硒薄膜其结晶较好, 表面晶粒可达1.0 μm左右。透射光谱分析结果表明, 随硒含量的增加, 铜锌锡硫硒薄膜的光学带隙从1.51 eV减小到1.14 eV。 相似文献
4.
电沉积法制备铜锌锡硫薄膜太阳能电池吸收层的研究进展 总被引:1,自引:0,他引:1
直接禁带半导体材料铜锌锡硫(CZTS)四元硫化物是近年来研究较多的具有锌黄锡矿结构的化合物半导体,由于其光吸收系数较高,禁带宽度适中,是太阳能电池理想的候选材料,使其在薄膜太阳能电池中迅速崛起。由于目前报道的最高转换效率距离其理论转换效率还存在相当差距,因此,研究CZTS(Se)四元硫(硒)化物半导体仍然是当前的研究热点之一。简单介绍了CZTS薄膜太阳能电池的结构组成,并详细介绍了3种主要制备CZTS薄膜的电沉积方法,即分步沉积Cu/Sn/Zn金属层、连续沉积Cu-Zn-Sn金属层、一步沉积Cu-Zn-Sn-S(Se)制备CZTS薄膜太阳能电池吸收层的电化学技术及相应器件,对其研究进展进行了综述,指出了相应方法存在的问题。还将3种电沉积方法进行了分析比较,提出了优化方法,展望了未来的发展趋势。 相似文献
5.
以硝酸铜、柠檬酸和氨水为原料,利用柠檬酸溶胶-凝胶法制备含铜凝胶,在氮气气氛下将干凝胶煅烧得到纳米铜粉,探讨成胶反应温度、原料配比、pH等因素对制备过程的影响,确定最低煅烧温度;采用热重-差热分析和红外光谱分析对柠檬酸溶胶-凝胶法制备纳米铜粉的过程进行分析,利用X射线衍射和扫描电镜对实验产物进行结构、形貌表征。结果表明,将柠檬酸与硝酸铜的物质的量比控制为1∶2时溶解混合,调节pH为7,在80℃下制成凝胶,在100℃下干燥后,250℃下煅烧0.5 h,可制得粒径为7090 nm的球型铜粉;推断干凝胶的结构主要为柠檬酸根与铜离子以双齿配位,以及部分为桥式配位。 相似文献
6.
近些年,人们越来越关注太阳辐射的光伏利用。光伏发电技术在迅猛发展,薄膜太阳电池从占有主导地位的硅晶片技术中抢占了一定的市场份额。其中铜锌锡硫薄膜太阳电池因具有低成本、高的光电转化效率和吸收系数、合适的禁带宽度和环境友好等优点成为近年来薄膜太阳电池研究的热点。本文阐述了铜锌锡硫薄膜太阳电池的器件结构和性能特点,介绍了铜锌锡硫薄膜太阳电池的制备方法和研究进展,并对今后主要的发展方向进行了展望。 相似文献
7.
溶胶-凝胶法制备纳米复合材料的研究进展 总被引:1,自引:0,他引:1
溶胶-凝胶法用于制备纳米粒子复合材料,因组分、制备途径和结构等可优化设计,故产物性能优异。本文介绍了溶胶-凝胶法制备的纳米粒子复合材料在光学、电子、磁学、生物、催化等领域的应用和最新研究进展。 相似文献
8.
9.
10.
溶胶-凝胶法制备SiO_2/脂肪酸复合相变材料 总被引:1,自引:0,他引:1
采用溶胶-凝胶法制备了SiO2作为载体的脂肪酸复合有机相变材料,脂肪酸在SiO2网络空间内发生相变,在宏观上始终呈现固体粉末状.采用差示扫描量热方法、热重和红外光谱对样品进行了热力学、微相结构分析.实验结果显示出了明显的储放热行为. 相似文献
11.
P型半导体Cu_2ZnSnS_4(CZTS)由于具有最佳的直接带隙(1.0~1.5eV)、高的光吸收系数(超过104 cm~(-1))以及丰富、无毒的元素组成,使其成为商业化低成本太阳能电池最有希望的候选材料之一。然而,材料本身的一些缺陷制约了CZTS薄膜太阳能电池效率的提高。为了提高CZTS薄膜太阳能电池的效率,研究者们使用其他阳离子部分取代Cu、Zn或Sn来改善CZTS的缺陷。从CZTS的3种不同取代位置出发,综述了近年来各种阳离子部分取代CZTS的研究进展,同时对阳离子部分取代CZTS材料的发展前景进行了展望。 相似文献
12.
Multi-stage evaporation is a well-established method for the controlled growth of chalcopyrite thin films. To apply this technique to the deposition of Cu2ZnSnS4 thin films we investigated two different stage sequences: (A) using Cu2SnS3 as precursor to react with Zn-S and (B) using ZnS as precursor to react with Cu-Sn-S. Both Cu2SnS3 and ZnS are structurally related to Cu2ZnSnS4. In case (A) the formation of copper tin sulphide in the first stage was realized by depositing Mo/SnSx/CuS (1 < x < 2) and subsequent annealing. In the second stage ZnS was evaporated in excess at different substrate temperatures. We assign a significant drop of ZnS incorporation at elevated temperatures to a decrease of ZnS surface adhesion, which indicates a self-limited process with solely reactive adsorption of ZnS at high temperatures. In case (B) firstly ZnS was deposited at a substrate temperature of 150 °C. In the second stage Cu, Sn and S were evaporated simultaneously at varying substrate temperatures. At temperatures above 400 °C we find a strong decrease of Sn-incorporation and also a Zn-loss in the layers. The re-evaporation of elemental Zn has to be assumed. XRD measurements after KCN-etch on the layers prepared at 380 °C show for both sample types clearly kesterite, though an additional share of ZnS and Cu2SnS3 can not be excluded. SEM micrographs reveal that films of sample type B are denser and have larger crystallites than for sample type A, where the porous morphology of the tin sulphide precursor is still observable. Solar cells of these absorbers reached conversion efficiencies of 1.1% and open circuit voltages of up to 500 mV. 相似文献
13.
Hideaki Araki Aya Mikaduki Yuki Kubo Tatsuhiro Sato Kazuo Jimbo Win Shwe Maw Hironori Katagiri Makoto Yamazaki Koichiro Oishi Akiko Takeuchi 《Thin solid films》2008,517(4):1457-1460
Stacked precursors of Cu, Sn, and Zn were fabricated on glass/Mo substrates by electron beam evaporation. Six kinds of precursors with different stacking sequences were prepared by sequential evaporation of Cu, Sn, and Zn with substrate heating. The precursors were sulfurized at temperatures of 560 °C for 2 h in an atmosphere of N2 + sulfur vapor to fabricate Cu2ZnSnS4 (CZTS) thin films for solar cells. The sulfurized films exhibited X-ray diffraction peaks attributable to CZTS. Solar cells using CZTS thin films prepared from six kinds of precursors were fabricated. As a result, the solar cell using a CZTS thin film produced by sulfurization of the Mo/Zn/Cu/Sn precursor exhibited an open-circuit voltage of 478 mV, a short-circuit current of 9.78 mA/cm2, a fill factor of 0.38, and a conversion efficiency of 1.79%. 相似文献
14.
In this paper, sphere-like kesterite Cu2ZnSnS4 (CZTS) nanoparticles were successfully synthesized by a facile solvothermal method. The CZTS nanoparticles with diameter range of 100-150 nm were agglomerated by CZTS nanocrystals. The as-obtained CZTS nanoparticles were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission election microscopy (TEM), Energy Dispersive Spectrometry (EDS) and UV-vis spectroscopy. Texture structures with kesterite crystallinity were reflected from the X-ray diffraction of 112, 200 and 312 planes of the CZTS nanoparticles. The UV-vis absorption spectra showed that CZTS nanoparticles had strong absorption in the visible light region. The observed band gap of 1.48 eV matched well with the bulk CZTS material that was optimal for solar cells. 相似文献
15.
Cu2ZnSnS4 (CZTS) solar cell with superstrate structure of fluorine-doped tin oxide glass/TiO2/In2S3/CZTS/Carbon was prepared entirely by non-vacuum processes. The compact TiO2 window and In2S3 buffer layers, CZTS absorber layer and Carbon electrode layer were prepared by spray pyrolysis method, ball milling and screen printing combination processes and screen printing process, respectively. The short-circuit current density, open-circuit voltage, fill factor and conversion efficiency of the best fabricated solar cell are 8.76 mA/cm2, 250 mV, 0.27 and 0.6%, respectively. The fabrication process for the CZTS solar cell did not employ any vacuum conditions or high-toxic materials (such as CdS, H2Se, H2S or Se). 相似文献
16.
Koichiro Oishi Genki Saito Kiyoshi Ebina Masanori Nagahashi Kazuo Jimbo Win Shwe Maw Hironori Katagiri Makoto Yamazaki Hideaki Araki Akiko Takeuchi 《Thin solid films》2008,517(4):1449-1452
Cu2ZnSnS4 films were grown on Si (100) by vacuum evaporation using elemental Cu, Sn, S and binary ZnS as sources. X-ray diffraction patterns of films grown at different substrate temperatures indicated that polycrystalline growth was suppressed and the orientational growths were relatively induced in a film grown at higher temperatures. Tetragonal structure of Cu2ZnSnS4 films was confirmed by studying RHEED patterns. The existence of c-axis ([001] direction) growth, two kinds of a-axis (〈100〉 direction) growth and four kinds of {112} twins which can be classified as two symmetrical pairs is proposed. Broad emissions at around 1.45 eV and 1.31 eV were observed in the photoluminescence spectrum measured at 13 K. 相似文献
17.
J.P. Leitão N.M. Santos P.A. Fernandes P.M.P. SaloméA.F. da Cunha J.C. GonzálezF.M. Matinaga 《Thin solid films》2011,519(21):7390-7393
Cu2ZnSnS4 is a promising semiconductor to be used as absorber in thin film solar cells. In this work, we investigated optical and structural properties of Cu2ZnSnS4 thin films grown by sulphurization of metallic precursors deposited on soda lime glass substrates. The crystalline phases were studied by X-ray diffraction measurements showing the presence of only the Cu2ZnSnS4 phase. The studied films were copper poor and zinc rich as shown by inductively coupled plasma mass spectroscopy. Scanning electron microscopy revealed a good crystallinity and compactness. An absorption coefficient varying between 3 and 4 × 104cm− 1 was measured in the energy range between 1.75 and 3.5 eV. The band gap energy was estimated in 1.51 eV. Photoluminescence spectroscopy showed an asymmetric broad band emission. The dependence of this emission on the excitation power and temperature was investigated and compared to the predictions of the donor-acceptor-type transitions and radiative recombinations in the model of potential fluctuations. Experimental evidence was found to ascribe the observed emission to radiative transitions involving tail states created by potential fluctuations. 相似文献
18.
Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route 总被引:2,自引:0,他引:2
An electrodeposition-annealing route to films of the promising p-type absorber material Cu2ZnSnS4 (CZTS) using layered metal precursors is studied. The dependence of device performance on composition is investigated, and it is shown that a considerable Cu-deficiency is desirable to produce effective material, as measured by photoelectrochemical measurements employing the Eu3+/2+ redox couple. The differing effects of using elemental sulphur and H2S as sulphur sources during annealing are also studied, and it is demonstrated that H2S annealing results in films with improved crystallinity. 相似文献
19.
Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective 总被引:2,自引:0,他引:2
A. Ennaoui M. Lux-Steiner D. Abou-Ras H.-W. Schock A. Hölzing R. Hock J. Schulze 《Thin solid films》2009,517(7):2511-4024
Thin-film solar cells based on Cu2ZnSnS4 (CZTS) absorbers were fabricated successfully by solid-state reaction in H2S atmosphere of electrodeposited Cu-Zn-Sn precursors. These ternary alloys were deposited in one step from a cyanide-free alkaline electrolyte containing Cu(II), Zn(II) and Sn(IV) metal salts on Mo-coated glass substrates. The solar cell was completed by a chemical bath-deposited CdS buffer layer and a sputtered i-ZnO/ZnO:Al bilayer. The best solar cell performance was obtained with Cu-poor samples. A total area (0.5 cm2) efficiency of 3.4% is achieved (Voc = 563 mV, jsc = 14.8 mA/cm2, FF = 41%) with a maximum external quantum efficiency (EQE) of 80%. The estimated band-gap energy from the external quantum efficiency (EQE) measurements is about 1.54 eV. Electron backscatter-diffraction maps of cross-section samples revealed CZTS grain sizes of up to 10 µm. Elemental distribution maps of the CZTS absorber show Zn-rich precipitates, probably ZnS, and a Zn-poor region, presumably Cu2SnS3, close to the interface Mo/CZTS. 相似文献