首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the mechanisms by which treatment with anti-IL-12 Ab prevents cure of infection with Leishmania major in resistant C57BL/6 mice. Consistent with delayed production of IL-12, anti-IL-12 Abs could be administered as late as 2 wk after infection to exacerbate disease. Starting at 2 wk of infection, the cultured lymph node cells from mice treated with either polyclonal or monoclonal anti-IL-12 Abs persistently generated 3- to 10-fold more IL-4 and IL-10 in response to L. major Ag compared with cells from mice receiving preimmune goat IgG. Reciprocal decreases in Ag-specific IFN-gamma production were observed in mice receiving anti-IL-12 Abs. A similar reversal of IFN-gamma and IL-4 production accompanied progressive disease induced by pretreatment with a single dose of anti-IFN-gamma mAb. Although IFN-gamma production was suppressed for up to 4 wk in mice treated with monoclonal anti-IL-12 or anti-IFN-gamma, coadministration of neutralizing anti-IL-4 IgG reversed progressive illness. These findings demonstrate that IL-12 produced in vivo is necessary for both the emergence of IFN-gamma producing cells and the down-regulation of Th2 cell responses during murine leishmaniasis. Furthermore, the uninhibited production of IL-4 was required to sustain progressive infection initiated by the decreased IFN-gamma synthesis observed in anti-IL-12 and anti-IFN-gamma-treated mice.  相似文献   

2.
By using a primary in vitro response specific for Leishmania major, normal T cells from resistant CBA/CaH-T6J and susceptible BALB/c mice commit to a Th1 and a Th2 response, respectively. Since commitment occurred, we measured the production of gamma interferon (IFN-gamma), interleukin-1 (IL-1), IL-2, IL-4, IL-5, IL-10, and IL-12, prostaglandin E2 (PGE2), transforming growth factor beta (TGF-beta), and nitric oxide in the first 7 days of the response to identify factors that are critical for Th1 and Th2 development. While cells from resistant CBA mice produced more IFN-gamma, IL-10, and nitric oxide, cells from susceptible BALB/c mice produced more IL-1alpha, IL-5, PGE2, and TGF-beta. Although substantial amounts of IL-12 were detected, IL-12 did not associate with either Th1 or Th2 development. We did not anticipate that cells from resistant CBA mice would make more IL-10 in vitro. However, this also occurred in vivo since CBA mice produced substantial amounts of IL-10 following infection with L. major. Moreover, adding anti-IL-10 to primary in vitro responses enhanced production of IFN-gamma and nitric oxide by cells from CBA and BALB/c mice. Therefore, IL-10 cannot be regarded as a cytokine that associates with susceptibility to infection with L. major. Finally, the data presented here suggest that a collection of factors that can be produced by accessory cells influence Th commitment (e.g., IL-1, PGE2, and TGF-beta favor Th2 development).  相似文献   

3.
4.
Within 1 day of infection with Leishmania major, susceptible BALB/c mice produce a burst of IL-4 in their draining lymph nodes, resulting in a state of unresponsiveness to IL-12 in parasite-specific CD4+ T cells within 48 h. In this report we examined the molecular mechanism underlying this IL-12 unresponsiveness. Extinction of IL-12 signaling in BALB/c mice is due to a rapid down-regulation of IL-12R beta2-chain mRNA expression in CD4+ T cells. In contrast, IL-12R beta2-chain mRNA expression was maintained on CD4+ T cells from resistant C57BL/6 mice. The down-regulation of the IL-12R beta2-chain mRNA expression in BALB/c CD4+ T cells is a consequence of the early IL-4 production. In this murine model of infection, a strict correlation is shown in vivo between expression of the IL-12R beta2-chain in CD4+ T cells and the development of a Th1 response and down-regulation of the mRNA beta2-chain expression and the maturation of a Th2 response. Treatment of BALB/c mice with IFN-gamma, even when IL-4 has been produced for 48 h, resulted in maintenance of IL-12R beta2-chain mRNA expression and IL-12 responsiveness. The data presented here support the hypothesis that the genetically determined susceptibility of BALB/c mice to infection with L. major is primarily based on an up-regulation of IL-4 production, which secondarily induces extinction of IL-12 signaling.  相似文献   

5.
SJL mice provide an interesting paradigm to examine the role(s) of APC in the differential induction of Th1 and Th2 cells. Immunization of young male SJL mice results in the preferential induction of Th2 cells, whereas Th1 cells are induced in age-matched female or older male SJL mice. The absence of Th1 responses in young male mice is associated with in vivo IL-4 and IL-10 down-regulating Mac-3+ APC priming of Th1 cells. The present report examines the mechanism of this APC-dependent induction of Th subsets. Examination of the surface expression of MHC class II, adhesion molecules (CD11a, CD11b, CD48, CD54, and CD102) or costimulatory molecules (CD24, CD80, and CD86) showed no differences between male- and female-derived Mac-3+ APC populations. In addition, no differences were detected in IL-1alpha, IL-1beta, IL-18, TNF-alpha, or IL-12 p35 mRNA expression. However, reduced expression of both IL-10 and IL-12 p40 mRNA were found in Mac-3+ cells from male mice compared with those in Mac-3+ cells from female mice. Anti-IL-4 or anti-IL-10 mAb treatment of young male donor mice eliminated the reduction of both IL-10 and IL-12 p40 mRNA, suggesting that the Th2 inducer phenotype is related to a decreased IL-12 secretion. Consistent with this idea, fewer IL-12 p40-secreting Mac-3+ cells were found in male mice compared with female mice, and treatment with rIL-12 resulted in the priming of Th1 cells in male mice. These data suggest that increased Th2 cytokines in vivo before encounter with Ag inhibit APC expression of IL-12, resulting in the preferential induction of Th2 cells in male SJL mice.  相似文献   

6.
IL-12 is both required and prognostic for Th1 development in mice with Candida albicans infection. To delineate further the physiologic role of IL-12 in antifungal immunity, mice deficient for this cytokine were assessed for susceptibility to C. albicans infections, and for parameters of innate and adaptive immunity. IL-12-deficient mice were highly susceptible to gastrointestinal infection or to reinfection and showed elevated production of Candida-specific IgE and IL-4 and defective production of IFN-gamma. The failure to mount protective Th1 responses occurred despite the presence of an unimpaired innate antifungal immune response, which correlated with unaltered IFN-gamma production, but defective production of, and responsiveness to, inhibitory IL-10. IL-10 or IL-12 neutralization increased the innate antifungal resistance in wild-type mice. However, in IL-12-deficient mice, treatment with exogenous IL-12 or IL-10 impaired IL-4 production and increased resistance to infection, through a negative effect on the CTLA-4/B7-2 costimulatory pathway. These results confirm the obligatory role of IL-12 in the induction of anticandidal Th1 responses, and indicate the existence of a positive regulatory loop between IL-12 and IL-10 that may adversely affect the innate antifungal response, but is required for optimal costimulation of IL-12-dependent CD4+ Th1 cells.  相似文献   

7.
IL-12 initiates the development of cell-mediated immunity by promoting the differentiation of naive T cells into the Th1 phenotype, and is essential in the development of a Th1 immune response to the intracellular protozoan parasite, Leishmania major. The present study investigated whether IL-12 is also required for the maintenance and effector function of an established Th1 immune response in L. major-infected mice. While neutralization of IL-12 compromised the ability of a leishmanial antigen-reactive Th1 cell clone to produce IFN-gamma in vitro, lymph node cells taken from 2-week L. major-infected mice were able to secrete IFN-gamma in an IL-12-independent manner. However, when a short-term T cell line was established in vitro from lymph node cells, the production of IFN-gamma again became IL-12 dependent. These results suggest that other factors may compensate for IL-12 in vivo in promoting IFN-gamma production during L. major infection. To directly assess if IL-12 was required in vivo for resistance to L. major, we studied the effect of IL-12 neutralization on both a primary and secondary L. major infection in C3H mice. L. major infection in C3H mice is characterized by the development of a small lesion that heals by 8 weeks, and these animals are resistant to reinfection. As previously reported, administration of anti-IL-12 monoclonal antibody (mAb) during a primary infection led to severe disease. However, mice that had healed from a primary infection with L. major and were treated with anti-IL-12 mAb were as resistant as control animals. These findings suggest that once Th1 cells have developed, their effector function in vivo is independent of IL-12, and that this independence is not due to an intrinsic property of the T cell, but to the microenvironment created by the infection.  相似文献   

8.
BACKGROUND: Escherichia coli preexposure in mice results in impaired elimination of subsequent intra-abdominal infections by a CD+4 T cell-dependent process. Certain gram-negative infections have been shown to induce T-helper-(Th)2 type CD4+ T-cell differentiation, which correlates with impaired elimination of infection and death. We hypothesized that E coli preexposure impairs subsequent bacterial elimination as a consequence of Th2 differentiation and that interleukin-12 (IL-12) treatment could reverse this differentiation and minimize the effects of E coli preexposure. METHODS: After preexposure to E coli or other species, BALB/c mice or interferon-gamma (INF-gamma)-deficient mice, treated with or without IL-12, were given a standard intra-abdominal infection (E coli, Bacteroides fragilis, and adjuvant). Cohorts were killed for abscess quantification, in vitro T-cell proliferative responsiveness, and cytokine secretory profiles. Splenic lymphocytes preexposed in vivo to other types of bacteria were transferred to naive mice before intra-abdominal infection to determine whether preexposure, eliciting the lymphocyte-dependent response, was species specific. RESULTS: E coli preexposure alone caused no Th1 or Th2 shift; increased the proliferative responses of T cells; and, in combination with IL-12 therapy, caused markedly decreased IL-2 and IL-4 responses and an increased IFN-gamma response. IL-12 therapy did not change the response to intra-abdominal infection despite its ability to cause marked Th1 polarization. IFN-gamma-deficient mice responded to E coli preexposure no differently than did wild-type mice. Transfer of lymphocytes preexposed to Pseudomonas aeruginosa, Klebsiella pneumoniae, and hemolytic E coli but not other types of nosocomial pathogens caused the development of more abscesses just as transfer of E coli preexposed lymphocytes had. CONCLUSIONS: CD4+ T cells responsive to E coli preexposure regulate subsequent intra-abdominal abscess formation by a mechanism not explained by the Th1/Th2 paradigm. Preexposure to hemolytic E coli and other Enterobacteriaceae alters responses to intra-abdominal infection.  相似文献   

9.
CD40 ligand (CD40L) gene-disrupted (CD40L-/-) mice were employed to examine the role of costimulatory signals via CD40L-CD40 interactions in mucosally induced tolerance. CD40L-/- and control (CD40L+/+) mice of the same C57BL/6 x 129/J background were immunized orally with 25 mg of OVA before systemic challenge with OVA in CFA. While CD40L+/+ mice showed reductions in Ag-specific T cell responses including delayed-type hypersensitivity (DTH) and proliferative responses, CD40L-/- mice underwent normal T cell responses. Further, cytokine analysis of splenic CD4+ T cells showed that both Th1-type (e.g., IFN-gamma and IL-2) and Th2-type (e.g., IL-4, IL-5, IL-6, and IL-10) responses were maintained in CD40L-/- mice orally immunized with OVA, whereas these cytokine responses in CD40L+/+ mice were significantly reduced. In addition, splenic CD4+ T cells from CD40L-/- mice orally immunized with OVA provided B cell help in Ag-specific Ab-forming cells when the cells were cultured with naive B cells in the presence of Ag and CD40L-transfected cell lines. In contrast, an identical culture condition containing splenic CD4+ T cells from orally tolerized CD40L+/+ mice did not exhibit helper activity. Taken together, these findings indicate that CD40L and CD40 interactions are essential for the induction of systemic T cell unresponsiveness to orally administered Ag.  相似文献   

10.
Non-MHC-restricted rejection mechanisms against the murine MHC-negative F9 embryonal carcinoma cells were analyzed. Strains of C57BL/6 (B6) background were resistant to the tumors irrespective of H-2 haplotypes, while others, including BALB/c background, were susceptible. This resistance was suggested to be mediated primarily by the host thymus-dependent alphabeta T cells, since both athymic B6 nude and normal B6 mice depleted with alphabeta T cells showed susceptible phenotype. The difference of the nature of alphabeta T cells infiltrating in H-2-identical B6- and BALB.B-derived tumors was then comparatively analyzed. It was revealed that unique T cells with NK1+ CD4- CD8- (double negative (DN)) alphabeta TCR+ phenotype were accumulated significantly in B6, but few in BALB.B mice. The population freshly isolated from the F9 tumor tissues preferentially expressed potent IL-4 mRNA, and was suggested to be mostly responsible for the endogenous IL-4 production. Indeed, the injection of either anti-NK1.1 or anti-IL-4-neutralizing Ab into the normal B6 rendered them significantly susceptible to the tumor cells. These results strongly suggested that NK1+ DN alphabeta T cells were responsible primarily for the rejection mechanisms against F9 tumors. Histologically, F9 tumors in B6 mice were characterized by abundant macrophage infiltration and massive tumor necrosis, neither of which was observed in those in BALB.B nor B6 mice preinjected with anti-IL-4 Ab, indicating that both histologic features in the resistant strain were dependent on the endogenous IL-4. Present results provide one of the first instances in which a recently emerging minor T cell subpopulation, thymus-dependent NK1+ DN alphabeta T cells, plays an essential role in anti-tumor responses in vivo.  相似文献   

11.
Interleukin (IL)-4-deficient mice were used to assess susceptibility to systemic or gastrointestinal Candida albicans infections, as well as parameters of innate and elicited T helper immunity. In the early stage of systemic infection with virulent C. albicans, an unopposed interferon (IFN)-gamma response renders IL-4-deficient mice more resistant than wild-type mice to infection. Yet, IL-4-deficient mice failed to efficiently control infection in the late stage and succumbed to it. Defective IFN-gamma and IL-12 production, but not IL-12 responsiveness, was observed in IL-4-deficient mice that failed to mount protective T helper type 1 cell (Th1)-mediated acquired immunity in response to a live vaccine strain of the yeast or upon mucosal immunization in vivo. In vitro, IL-4 primed neutrophils for cytokine release, including IL-12. However, late treatment with exogenous IL-4, while improving the outcome of infection, potentiated CD4(+) Th1 responses even in the absence of neutrophils. These findings indicate that endogenous IL-4 is required for the induction of CD4(+) Th1 protective antifungal responses, possibly through the combined activity on cells of the innate and adaptive immune systems.  相似文献   

12.
13.
B cell knockout mice are unable to clear a primary erythrocytic infection of Plasmodium chabaudi chabaudi. However, the early acute infection is controlled to some extent, giving rise to a chronic relapsing parasitemia that can be reduced either by drug treatment or by adoptive transfer of B cells. Similar to mice rendered B-cell deficient by lifelong treatment with anti-mu antibodies, B cell knockout mice (muMT) retain a predominant CD4+ Th1-like response to malarial antigens throughout a primary infection. This contrasts with the response seen in control C57BL/6 mice in which the CD4+ T-cell response has switched to that characteristic of Th2 cells at the later stages of infection, manifesting efficient help for specific antibodies in vitro and interleukin 4 production. Both chloroquine and adoptive transfer of immune B cells reduced parasite load. However, the adoptive transfer of B cells resulted in a Th2 response in recipient muMT mice, as indicated by a relative increase in the precursor frequency of helper cells for antibody production. These data support the idea that B cells play a role in the regulation of CD4+ T subset responses.  相似文献   

14.
CBA/J (highly resistant), BALB/c (moderately resistant), and C57BL/6 (susceptible) mice displayed three resistance patterns following intratracheal inoculation of Cryptococcus neoformans 52. The inability to clear the infection correlated with the duration of the eosinophil infiltrate in the lungs. The role of IL-5 in promoting the pulmonary eosinophilia and subsequent inflammatory damage in susceptible C57BL/6 mice was investigated. C57BL/6 mice developed a chronic alveolar, peribronchiolar, and perivascular eosinophilia following C. neoformans infection. This resulted in the accumulation of intracellular Charcot-Leyden-like crystals in alveolar macrophages by wk 4 and the extracellular deposition of these crystals in the bronchioles with associated destruction of airway epithelium by wk 6. IL-5 mRNA was expressed in the lungs, and injections of anti-IL-5 mAb prevented eosinophil recruitment and crystal deposition but did not alter cryptococcal clearance. Depletion of CD4+ T cells (but not CD8+) ablated IL-5 production by lung leukocytes in vitro and eosinophil recruitment in vivo. Neutralization of IL-5 also inhibited the recruitment of macrophages, CD8+ T lymphocytes, and B lymphocytes by 47 to 57%. Anti-IL-5 mAb inhibited CD4+ T lymphocyte recruitment by 30% but did not affect neutrophil recruitment. Thus, the development of a chronic eosinophil infiltrate in the lungs of C. neoformans-infected C57BL/6 mice is a nonprotective immune response that causes significant lung pathology. Furthermore, IL-5 promotes the recruitment and activation of eosinophils, resulting in the recruitment of additional macrophages and lymphocytes into the lungs.  相似文献   

15.
IFN-gamma is critical for the cure of leishmaniasis in humans and mice. BALB/c mice are genetically susceptible to infection with the visceralizing species of Leishmania, L. chagasi. We have evidence that a soluble factor(s) inhibits IFN-gamma production by cultured liver granuloma cells from BALB/c mice during L. chagasi infection. In contrast, liver granulomas from C3H.HeJ mice, which are genetically resistant to L. chagasi infection, produce abundant IFN-gamma. According to ELISAs and neutralization studies, there was not evidence that the Th2-type cytokines IL-10 or IL-4 contributed to IFN-gamma suppression. However, both Ab neutralization and immunohistochemistry showed that granuloma-derived TGF-beta was, at least in part, responsible for inhibiting IFN-gamma release by CD4+ cells in BALB/c liver granuloma cultures. Consistently, TGF-beta levels were high in liver granulomas from susceptible BALB/c mice but low in resistant C3H mice or in BALB/c mice that were immunized against L. chagasi disease. Administration of recombinant adenovirus expressing TGF-beta (AdV-TGFbeta) but not IL-10 (AdV-IL10) caused genetically resistant C3H mice to become significantly more susceptible to L. chagasi infection. In contrast, either AdV-TGFbeta or AdV-IL10 could abrogate the protective immune response achieved by immunization of BALB/c mice. We conclude that locally secreted TGF-beta inhibits Th1-associated cure of murine visceral leishmaniasis caused by L. chagasi, independently of Th2-type cytokines.  相似文献   

16.
The role of cytokine- and T helper (Th)-dependent lung mucosal antifungal immunity in murine invasive pulmonary aspergillosis (IPA) was investigated. Intact or leukopenic DBA/2 mice were resistant or highly susceptible, respectively, to infection caused by multiple intranasal injections of viable Aspergillus fumigatus conidia. Resistance was associated with unimpaired innate antifungal activity of pulmonary phagocytic cells, concomitant with high-level production of tumor necrosis factor (TNF)-alpha and interleukin (IL)-12 and the presence of interstitial lymphocytes producing interferon-gamma and IL-2. Conversely, production of TNF-alpha and IL-12 was down-regulated in highly susceptible mice, which also had defective innate antifungal immunity and high-level production of IL-4 and IL-10 by lung lymphocytes. Resistance was increased in susceptible mice upon local IL-4 or IL-10 neutralization or IL-12 administration. These results indicate that, similar to observations in mice with disseminated aspergillosis, innate and Th1-dependent immunity play an essential role in host defense against IPA.  相似文献   

17.
Because T cells appear to modulate the severity of murine Borrelia burgdorferi infections, we decided to examine the possible involvement of T cell-associated cytokines in disease outcome. Comparison of in vitro B. burgdorferi Ag-induced cytokine production in disease-susceptible and -resistant strains revealed striking differences; spleen cells from susceptible C3H mice produced significantly higher levels of IL-2 and IFN-gamma and lower levels of IL-4 than spleen cells from resistant BALB/c mice. Lymph node responses were even more divergent, with C3H mice producing high levels of IFN-gamma, and BALB/c mice producing little or none. This apparent Th1/Th2 cytokine imbalance was also reflected in vivo, since serum from C3H had significantly higher levels of B. burgdorferi-specific IgG2a Ab and lower levels of IgG1 Ab than serum from BALB/c mice. In vivo studies confirmed the importance of IL-4 in early control of spirochete growth, since treatment of either strain with neutralizing anti-IL-4 mAb led to increased joint swelling and higher spirochete burdens in joints compared with those in control mAb-treated mice. In contrast, IFN-gamma may hinder early control of spirochete growth in susceptible C3H mice, since treatment of mice with neutralizing anti-IFN-gamma mAb reduced both joint swelling and joint spirochete burdens compared with those in control mAb-treated mice. These studies indicate opposing roles for IL-4 and IFN-gamma in the modulation of spirochete growth and disease development in B. burgdorferi-infected mice and suggest that differential cytokine production early in infection may contribute to strain-related differences in susceptibility.  相似文献   

18.
The role of IL-12 role in regulating Th1/Th2 balance is attributed in part to the ability of this cytokine to induce IFNgamma production by NK and Th1 cells, which in turn promotes Th1 and inhibits Th2 development. In the present study, the requirement for IL-12 in the development of alloantigen-reactive Th1 was assessed by adding neutralizing anti-IL-12 Abs or the IL-12 receptor antagonist p40 homodimer to primary MLC. The resulting cell populations were assessed for Th1 development by measuring IFN-gamma production upon restimulation with alloantigens. While the addition of anti-IL-12 Abs to primary MLC did not influence subsequent cytokine production, addition of p40 homodimer markedly enhanced, rather than decreased, Th1 development. To determine which T cell population produced enhanced levels of IFN-gamma in response to p40 homodimer, CD4+ or CD8+ T cells were depleted from the MLC. While p40 homodimer was inhibitory to selected CD4+ Th1 development, it enhanced IFN-gamma production by CD8+ T cells. To test the in vivo relevance of these findings, mouse heterotopic cardiac allograft recipients were treated with either p40 homodimer, anti-CD8 mAb, or with both p40 homodimer and anti-CD8 mAb. Treatment of allograft recipients with p40 homodimer had no effect on the in vivo sensitization of IFN-gamma-producing cells and resulted in accelerated allograft rejection relative to unmodified recipients. However, p40 homodimer markedly prolonged allograft survival in mice depleted of CD8+ T cells. Hence, p40 homodimer stimulates CD8+ Th1 development in vitro but inhibits CD4+ T cell function both in vitro and in vivo.  相似文献   

19.
Infection of BALB/c mice with Trypanosoma cruzi resulted in up-regulated expression of Fas and Fas ligand (FasL) mRNA by splenic CD4+ T cells, activation-induced CD4+ T cell death (AICD), and in Fas: FasL-mediated cytotoxicity. When CD4+ T cells from infected mice were co-cultured with T. cruzi-infected macrophages, onset of AICD exacerbated parasite replication. CD4+ T cells from T. cruzi-infected FasL-deficient BALB gld/gld mice had no detectable AICD in vitro and their activation with anti-TCR did not exacerbate T. cruzi replication in macrophages. However, infection of BALB gld/gld mice with T. cruzi resulted in higher and more prolonged parasitemia, compared to wild-type mice. Secretion of Th2 cytokines IL-10 and IL-4 by CD4+ T cells from infected gld mice was markedly increased, compared to controls. In addition, in vivo injection of anti-IL-4 mAb, but not of an isotype control mAb, reduced parasitemia in both gld and wild-type mice. These results indicate that, besides controlling CD4+ T cell AICD and parasite replication in vitro, an intact Fas: FasL pathway also controls the host cytokine response to T. cruzi infection in vivo, being required to prevent an exacerbated Th2-type immune response to the parasite.  相似文献   

20.
The murine model of infection with Leishmania major has allowed the demonstration of a causal relationship between, on the one hand, genetically determined resistance to infection and the development of a Th1 CD4+ cell response, and on the other hand, genetically determined susceptibility and Th2 cell maturation. Using this murine model of infection, the role of cytokines in directing the functional differentiation pathway of CD4+ T cell precursors, has been demonstrated in vivo. Thus, IL-12 and IFN-gamma have been shown to favour Th1 cell development and IL-4 is crucial for the differentiation of Th2 responses. Maturation of a Th2 response in susceptible BALB/c mice following infection with L. major is triggered by the IL-4 produced during the first two days after parasite inoculation. This IL-4 rapidly renders parasite specific CD4+ T cells precursors unresponsive to IL-12. A restricted population of CD4+ T cells expressing the V beta 4V alpha 8 TCR heterodimer and recognizing a single epitope on the LACK (Leishmania Activated C-Kinase) antigen of L. major is responsible for this rapid production of IL-4, instructing subsequent differentiation towards the Th2 phenotype of CD4+ T cells specific for several parasite antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号