首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
为研究流道结构对质子交换膜燃料电池(PEMFC)反应气体质量传输及输出性能的影响,建立翅脉流道、叶脉流道及蛇形流道的三维PEMFC几何模型,并对比3种流道的反应气体浓度分布、压力分布及电流密度分布,最后对翅脉流道结构参数进行优化。结果表明,与蛇形流道、叶脉流道相比,翅脉流道能明显改善流道和扩散层内反应气体浓度分布的均匀性,有利于强化反应气体向催化层的质量传递;翅脉流道能减小气体压力分布梯度,使反应气体扩散更加充分;翅脉流道的平均膜电流密度更大,有利于促进电化学反应稳定进行;翅脉流道能改善PEMFC的输出性能,翅脉流道峰值功率密度比蛇形流道、叶脉流道分别提高7.72%和6.25%;减小翅脉流道的直流道长度或圆弧流道圆心角,可提升翅脉流道输出性能。  相似文献   

2.
为了研究流场结构对HT-PEM燃料电池性能的影响,运用多物理场直接耦合分析软件(COMSOL Multiphysics),对由两种流道组合而成的4种流场(两种单一流场与两种混合流场)的HT-PEM燃料电池进行了数值模拟。在相同的操作条件下,得到了4种组合流场的极化曲线、阴极氧气浓度变化及阴极流道中心压力变化情况。对模拟结果进行分析和比较得出:阴极氧气浓度和阴极流道中心压力均沿着气体流动方向逐渐降低,其变化主要发生在流道的拐角处及渐变处;综合考虑输出电流密度、气体传质及气体在电极各处分配的均匀性等因素,蛇形渐变流场的整体性能最好,阳极普通蛇形流场/阴极蛇形渐变流场组成的混合流场其次,普通蛇形流场再次,阳极蛇形渐变流场/阴极普通蛇形流场组成的混合流场最差。模拟结果对HT-PEM燃料电池结构的优化和设计具有重要的指导意义。  相似文献   

3.
质子交换膜燃料电池的流道结构对反应气体的流动和压降等具有重要影响。受神经元结构启发,提出一种兼顾径向流道和仿生流道在压降和气体分布均匀性优点的新型仿生流道结构。通过COMSOL软件模拟研究该新型流道的分支数(2~9)对质子交换膜燃料电池的性能曲线、阴极氧浓度分布、水浓度分布及压降的影响。结果表明:增加流道分支数可提高质子交换膜燃料电池的输出性能,其中9分支流道的峰值功率密度最大,为0.32 W/cm2,相比于2分支流道增加了的146.15%;分支数的增加也会提高氧浓度分布的均匀性,阴极气体扩散层与催化层交界面处的平均氧浓度从0.44 mol/m3提高到1.42 mol/m3,氧气不均匀度从2.13降低至0.90;分支数的增加也明显改善了弧形流道内的水浓度分布。此外,随着流道分支数从2增加到9,流道压降从38.57 Pa递减至4.47 Pa,质子交换膜燃料电池的输出功率从0.40 W递增到1.56 W。  相似文献   

4.
针对常规流场质子交换膜燃料电池提出了三维非等温数学模型。模型考虑了电化学反应动力学以及反应气体在流道和多孔介质内的流动和传递过程,详细研究了水在质子膜内的电渗和扩散作用。计算结果表明,反应气体传质的限制和质子膜内的水含量直接决定了电极局部电流密度的分布和电池输出性能;在电流密度大于0.3~0.4A/cm2时开始出现水从阳极到阴极侧的净迁移;高电流密度时膜厚度方向存在很大的温度梯度,这对膜内传递过程有较大影响。  相似文献   

5.
以微型直接甲醇燃料电池(Micro Direct Methanol Fuel Cell,简称μ-DMFC)输出性能为研究对象,首先通过MEMS(Micro-Electro-Mechanical Systems,微机电系统)工艺,分别制作4种透明的不同流道宽度(800、400、200、100μm)的阳极流场板,并进行μ-DMFC的整体封装。而后,选定某一特定流道宽度的μ-DMFC,研究不同甲醇溶液流速对μ-DMFC输出性能的影响。所制作的透明流道可实时观察μ-DMFC内阳极流场板CO2气体的生成。实验结果表明:阳极流场板选用流道宽度为400μm,1mol/L甲醇溶液的流速为1mL/min时,μ-DMFC的输出性能最优,最大输出功率为4.62mW/cm2,最大电流密度为49.11mA/cm2。合理的流道宽度和甲醇流速对于获得最优的μ-DMFC输出性能有重要影响。  相似文献   

6.
李姣  郭航  叶芳 《热科学与技术》2023,22(4):341-350
质子交换膜燃料电池在运行过程中反应物从流道传输至催化层时会经过气体扩散层,气体扩散层即 可用来传输反应气体,又用来排出反应物生成的水,所以探究气体扩散层的结构对参加反应的物质及生成物 传输的影响规律有助于了解其分布情况。通过数值模拟比较了穿孔型、树状型和不规则形状气体扩散层在不 同孔隙率下顺流流动时对电池性能的影响情况。计算结果表明,气体扩散层结构严重影响质子交换膜燃料电 池性能,三种不同形状的气体扩散层对应的电性能随孔隙率的变化规律各不相同,到达催化层表面氧气的含 量受扩散层结构影响比氢气大,气体扩散层结构对阴极侧生成物水含量的影响不可忽略。  相似文献   

7.
陈士忠  刘健  陈宁  吴玉厚 《可再生能源》2014,(12):1908-1916
双极板是质子交换膜燃料电池堆的重要部件之一,流场形状结构构成了双极板最主要特征。文章将近年来流场形状的研究现状进行梳理,通过对比分析各种流场设计方法,其对反应物与生成物的分布影响,流场内压力、热量及电流密度分布,流场制造成本等。总结各种流场优缺点,得出燃料电池不同实际应用情况下的最佳流场类型。以此为质子交换膜燃料电池流场的结构设计及研究发展方向提供可行性参考。  相似文献   

8.
固体氧化物燃料电池(SOFC)内存在复杂的多物理场传递过程,这些过程对电池的性能具有重要的影响.以某实际生产的 SOFC 为对象,建立了其三维模型,模型描述了以合成气为燃料时其内部发生的传质、传热、化学及电化学反应等多物理场过程.根据模拟结果,给出了两种合成气组分下电池内温度、气体组分、化学反应速率以及电流密度等参数的分布.结果显示:电池内温度分布很不均匀,且合成气中 H2初始含量对电池内温度分布具有重要影响,H2含量越小,电池内最高温度越低,但局部区域温度梯度会变大;化学反应速率和电流密度分布也不规律,其大小都受到当地温度和气体成分分布的影响,且电流密度最大值处于肋片、流道和电极的交界处.  相似文献   

9.
质子交换膜燃料电池膜电极组件表面的温度分布会影响质子交换膜燃料电池的性能、寿命和可靠性.为探究质子交换膜燃料电池传热规律,本文提出了一种基于神经网络的质子交换膜燃料电池膜电极组件温度分布的预测模型.本研究选取径向基函数神经网络(RBF)和广义回归神经网络(GRNN)两种神经网络,以电流密度、温度点的位置作为网络输入,不同位置的温度作为网络输出,对平行流道质子交换膜燃料电池、蛇形流道质子交换膜燃料电池分别建立了神经网络预测模型.结果显示,RBF神经网络预测的均方根误差平均为0.464、平均绝对百分误差为1.179%,GRNN神经网络预测的均方根误差平均为0.7155、平均绝对百分误差为2.27%;相较于GRNN神经网络,RBF神经网络精度更高;基于RBF神经网络的平行流道质子交换膜燃料电池膜电极组件温度分布预测模型预测值与96%的实验值的相对误差在5%以内.基于RBF神经网络的蛇形流道质子交换膜燃料电池膜电极组件温度分布预测模型预测值与95%的实验值的相对误差在5%以内.  相似文献   

10.
一体式再生燃料电池的热流密度和温度分布的研究对电池热管理具有重要的意义。本文将自制的薄膜传感器植入一体式再生燃料电池中,进行非原位实验研究。在给定不同气体预热温度下,测量了一体式再生燃料电池内部热流密度和局部温度,并根据已得到的温度和热流密度计算出局部表面传热系数。结果表明,在不同的气体预热温度下,流道内气体的温度和气体扩散层表面的温差维持在3℃左右。气体扩散层表面的热流密度整体呈现出下降的趋势。靠近加热棒处的温度最高,但热流密度最低。相同的气体预热温度下,流道内气体和气体扩散层表面的温差对换热量的影响要大于温度梯度的影响;气体预热温度的上升对表面传热系数h的影响不大。30℃时,表面传热系数h值在450 ~ 750 W/(m2?K) 之间。40℃时,表面传热系数h在450 ~ 650 W/(m2?K)之间。  相似文献   

11.
The performance of a proton exchange membrane (PEM) fuel cell is directly associated to the flow channels design embedded in the bipolar plates. The flow field within a fuel cell must provide efficient mass transport with a reduced pressure drop through the flow channels in order to obtain a uniform current distribution and a high power density. In this investigation, three-dimensional fuel cell models are analyzed using computational fluid dynamics (CFD). The proposed flow fields are radially designed tree-shaped geometries that connect the center flow inlet to the perimeter of the fuel cell plate. Three flow geometries having different levels of bifurcation were investigated as flow channels for PEM fuel cells. The performance of the fuel cells is reported in polarization and power curves, and compared with that of fuel cells using conventional flow patterns such as serpentine and parallel channels. Results from the flow analysis indicate that tree-shaped flow patterns can provide a relatively low pressure drop as well as a uniform flow distribution. It was found that as the number of bifurcation levels increases, a larger active area can be utilized in order to generate higher power and current densities from the fuel cell with a negligible increase in pumping power.  相似文献   

12.
Interdigitated flow field is one of the commonly used designs in proton exchange membrane (PEM) fuel cells. The knowledge of how the current density differs under the inlet channel, the land and the outlet channel, is critical for flow field design and optimization. In this study, the current densities under the inlet channel, the land and the outlet channel in PEM fuel cell with an interdigitated flow field are separately measured using the technique of partially-catalyzed membrane electrode assemblies (MEAs). The experimental results show that the current density under the outlet channel is significantly lower than that under the inlet channel, and the current density under the land is higher than both channels at typical fuel cell operation voltages. Further experimental results show that the pattern of local current density remains the same with different cathode flow rates.  相似文献   

13.
In this paper, a compact 3 kW air-cooled fuel cell stack consists of 95 single cells with metallic bipolar plate is designed. Compared with graphite bipolar plates, metal stamping bipolar plates are lighter in weight, smaller in size and faster in heat conduction, therefore the transient behaviors of the voltage and temperature of each cell are analyzed. The results show that the heat distribution of the air-cooled fuel cell is very uniform, and the temperature difference between the inlet and outlet of cathode air of the fuel cell is lower than 15 °C. The individual cell voltage uniformity percentage variation value reaches 7% when the drop in the loading current is over 25 A. Moreover, the voltage uniformity variation value is higher than 4% when the loading current output exceeds 35A. Thus, a large drop in loading and a high loading current easily increase the voltage uniformity variation value. Long-term continuous operation has a negative influence on the performance of the stack, especially the last fuel cell near the anode outlet. Anode purging can effectively alleviate the uniformity percentage variation in the voltages. The designed air-cooled fuel cell exhibits good performance and strong environmental adaptability.  相似文献   

14.
Bipolar plates include separate gas flow channels for anode and cathode electrodes of a fuel cell. These gases flow channels supply reactant gasses as well as remove products from the cathode side of the fuel cell. Fluid flow, heat and mass transport processes in these channels have significant effect on fuel cell performance, particularly to the mass transport losses. The design of the bipolar plates should minimize plate thickness for low volume and mass. Additionally, contact faces should provide a high degree of surface uniformity for low thermal and electrical contact resistances. Finally, the flow fields should provide for efficient heat and mass transport processes with reduced pressure drops. In this study, bipolar plates with different serpentine flow channel configurations are analyzed using computational fluid dynamics modeling. Flow characteristics including variation of pressure in the flow channel across the bipolar plate are presented. Pressure drop characteristics for different flow channel designs are compared. Results show that with increased number of parallel channels and smaller sizes, a more effective contact surface area along with decreased pressured drop can be achieved. Correlations of such entrance region coefficients will be useful for the PEM fuel cell simulation model to evaluate the affects of the bipolar plate design on mass transfer loss and hence on the total current and power density of the fuel cell.  相似文献   

15.
Proton exchange membrane (PEM) fuel cells are attractive because of advantages such as low-temperature operation, no emission of harmful gases and high efficiency. However, the bipolar plates used in the state-of-the-art planar architecture are costly and increase the dead weight of the cell. In addition, the flow channels in the planar fuel cell increase the difficulty in removing the water produced in the cathode during cell operation. Cylindrical PEM fuel cells, on the other hand, do not require bipolar plates and there is no need for precisely machined flow channels. Thus, cylindrical PEM fuel cells are cheap, efficient in water management, and possess higher volumetric and gravimetric power density compared to planar PEM fuel cells. The design of a cylindrical fuel cell is very simple, but the fabrication of the same is fairly complex. In this work, a novel cathode current collector design for cylindrical PEM fuel cell has been developed. The cell performance was limited by low open circuit voltage and high ohmic resistance. The open circuit voltage of the cell is increased from 0.85 V to 0.95 V using an acrylic based adhesive to seal the membrane edges. The contact resistance of the cell is reduced from 75 mOhm to 50 mOhm by increasing the contact pressure on the membrane electrode assembly and it is further reduced to 30 mOhm by gold coating the current collectors. Furthermore, a cumulative 40% increase in peak power has been achieved from the optimization of cathode rib width and hydrogen flow rate. The optimized cell delivered a current density of 400 mA/cm2 at 0.6 V and peak power of 2 W, which is appreciable considering the fact that the cell is air-breathing and operated with very minimal subsystems.  相似文献   

16.
In this paper, the effects of using porous metal foam based bipolar plates (BPs) are investigated under practical automotive fuel cell operations with low humidification reaction gases. Particular emphasis is placed on evaluating water management capabilities of metal foam based BP designs, compared to the traditional serpentine flow field BP designs. A three-dimensional, two-phase fuel cell model developed in a previous study is applied to 25cm2 real-scale fuel cell geometries with metal foam and serpentine flow modes, and then successfully validated against the experimental data measured under different operating pressures and current densities. The detailed simulation results clearly elucidate advantages of using metal foam as flow distributor through extensive multidimensional contours of flow velocity, species, and current density.  相似文献   

17.
A learning curve model has been developed to analyze the mass production cost structure of proton exchange membrane fuel cells for automobiles. The fuel cell stack cost is aggregated by the cost of membranes, platinum, electrodes, bipolar plates, peripherals and assembly process. The mass production effects on these components are estimated. Nine scenarios with different progress ratios and future power densities are calculated by the learning curve for cumulative production of 50 000 and 5 million vehicles. The results showed that the fuel cell stack cost could be reduced to the same level as that of an internal combustion engine today, and that the key factors are power density improvement and mass production process of bipolar plates and electrodes for reducing total cost of fuel cell stack.  相似文献   

18.
This paper presents a three-dimensional model of an anode-supported planar solid oxide fuel cell with corrugated bipolar plates serving as gas channels and current collector above the active area of the cell. Conservation equations of mass, momentum, energy and species are solved incorporating the electrochemical reactions. Heat transfer due to conduction, convection and radiation is included. An empirical equation for cell resistance with measured values for different parameters is used for the calculations. Distribution of temperature and gas concentrations in the PEN (positive electrode/electrolyte/negative electrode) structure and gas channels are investigated. Variation of current density over the cell is studied. Furthermore, the effect of radiation on the temperature distribution is studied and discussed. Modeling results show that the relatively uniform current density is achieved at given conditions for the proposed design and the inclusion of thermal radiation is required for accurate prediction of temperature field in the single cell unit.  相似文献   

19.
Modeling plays a very important role in the development of fuel cells and fuel cell systems. The aim of this work is to investigate the electrochemical processes of a Solid Oxide Fuel Cell (SOFC) and to evaluate the performance of the proposed SOFC design. For this aim a three-dimensional Computational Fluid Dynamics (CFD) model has been developed for an anode-supported planar SOFC with corrugated bipolar plates serving as gas channels and current collector. The conservation of mass, momentum, energy and species is solved by using the commercial CFD code FLUENT in the developed model. The add-on FLUENT SOFC module is implemented for modeling the electrochemical reactions, loss mechanisms and related electric parameters throughout the cell. The distributions of temperature, flow velocity, pressure and gaseous (fuel and air) concentrations through the cell structure and gas channels is investigated. The relevant fuel cell variables such as the potential and current distribution over the cell and fuel utilization are calculated and studied. The modeling results indicate that, for the proposed SOFC design, reasonably uniform distributions of current density over the active cell area can be achieved. The geometry of the cathode gas channel has a substantial effect on the oxygen distribution and thus the overall cell performance. Methods for arriving at improved cell designs are discussed.  相似文献   

20.
The focus of this paper is to study the flow crossover between two adjacent flow channels in a proton exchange membrane (PEM) fuel cell with serpentine flow field design in bipolar plates. The effect of gas diffusion layer (GDL) deformation on the flow crossover due to the compression in a fuel cell assembly process is particularly investigated. A three-dimensional structural mechanics model is created to study the GDL deformation under the assembly compression. A three-dimensional PEM fuel cell numerical model is developed in the aforementioned deformed domain to study the flow crossover between the adjacent channels in the presence of the GDL intrusion. The models are solved in COMSOL Multiphysics—a finite element-based commercial software package. The pressure, velocity, oxygen mass fraction and local current density distribution are presented. A parametric study is conducted to quantitatively investigate the effect of the GDL’s transport related parameters such as porosity and permeability on the flow crossover between the adjacent flow channels. The polarization curves are also examined with and without the assembly compression considered. It is found that the compression effect is evident in the high current density region. Without considering the assembly compression, the fuel cell model tends to over-predict the fuel cell’s performance. The proposed method to simulate the crossover with the deformed computational domain is more accurate in predicting the overall performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号