首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
2.
3.
An optimal order algebraic multilevel iterative method for solving system of linear algebraic equations arising from the finite element discretization of certain boundary value problems, that have their weak formulation in the space H(div), is presented. The algorithm is developed for the discrete problem obtained by using the lowest‐order Raviart–Thomas space. The method is theoretically analyzed and supporting numerical examples are presented. Furthermore, as a particular application, the algorithm is used for the solution of the discrete minimization problem which arises in the functional‐type a posteriori error estimates for the discontinuous Galerkin approximation of elliptic problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
5.
An explicit–explicit staggered time‐integration algorithm and an implicit–explicit counterpart are presented for the solution of non‐linear transient fluid–structure interaction problems in the Arbitrary Lagrangian–Eulerian (ALE) setting. In the explicit–explicit case where the usually desirable simultaneous updating of the fluid and structural states is both natural and trivial, staggering is shown to improve numerical stability. Using rigorous ALE extensions of the two‐stage explicit Runge–Kutta and three‐point backward difference methods for the fluid, and in both cases the explicit central difference scheme for the structure, second‐order time‐accuracy is achieved for the coupled explicit–explicit and implicit–explicit fluid–structure time‐integration methods, respectively, via suitable predictors and careful stagings of the computational steps. The robustness of both methods and their proven second‐order time‐accuracy are verified for sample application problems. Their potential for the solution of highly non‐linear fluid–structure interaction problems is demonstrated and validated with the simulation of the dynamic collapse of a cylindrical shell submerged in water. The obtained numerical results demonstrate that, even for fluid–structure applications with strong added mass effects, a carefully designed staggered and subiteration‐free time‐integrator can achieve numerical stability and robustness with respect to the slenderness of the structure, as long as the fluid is justifiably modeled as a compressible medium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
We report here on TiO2/organically modified silane (ormosil) organic–inorganic hybrid waveguide films doped with disperse red 1 (DR1) azoaromatic chromophores and derived by a low-temperature sol–gel process for photonic applications. Acid-catalyzed solutions of γ-glycidoxypropyltrimethoxysilane and methyltrimethoxysilane mixed with tetrabutyl titanate are used as matrix precursor for the hybrid films. Third-order nonlinear and photo-responsive properties of the hybrid films are studied by using a z-scan technique and a UV–vis absorption spectroscopy. Results indicate that the hybrid films have a large third-order nonlinear susceptibility and an obvious trans-to-cis photoisomerization under UV light irradiation. The planar waveguide and structural properties of the hybrid films are also characterized by a prism coupling technique, thermal gravimetric analysis, and Fourier-transform infrared spectroscopy. These results indicate that the as-prepared hybrid films are promising candidates for integrated optics and photonic applications, which allow directly integrating on the same chip waveguide devices with the functionalized devices.  相似文献   

7.
A high‐order finite volume method based on piecewise interpolant polynomials is proposed to discretize spatially the one‐dimensional and two‐dimensional advection–diffusion equation. Evolution equations for the mean values of each control volume are integrated in time by a classical fourth‐order Runge–Kutta. Since our work focuses on the behaviour of the spatial discretization, the time step is chosen small enough to neglect the time integration error. Two‐dimensional interpolants are built by means of one‐dimensional interpolants. It is shown that when the degree of the one‐dimensional interpolant q is odd, the proper selection of a fixed stencil gives rise to centred schemes of order q+1. In order not to lose precision due to the change of stencil near boundaries, the degree of the interpolants close to boundaries is raised to q+1. Four test cases with small values of diffusion are integrated with high‐order methods. It is shown that the spatial discretization of the advection–diffusion equation with periodic boundary conditions leads to normal discretization matrices, and asymptotic stability must be assured to bound the spatial discretization error. Once the asymptotic stability is assured by means of the spectra of the discretization matrix, the spatial error is of the order of the truncation error. However, it is shown that the discretization of the advection–diffusion equation with arbitrary boundary conditions gives rise to non‐normal matrices. If asymptotic stability is assured, the spatial order of steady solutions is of the order of the truncation error. But, for transient processes, the order of the spatial error is determined by both the truncation error and the norm of the exponential matrix of the spatial discretization. The use of the pseudospectra of the discretization matrix is proposed as a valuable tool to analyse the transient error of the numerical solution. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
The present study aims to accelerate the non‐linear convergence to incompressible Navier–Stokes solution by developing a high‐order Newton linearization method in non‐staggered grids. For the sake of accuracy, the linearized convection–diffusion–reaction finite‐difference equation is solved line‐by‐line using the nodally exact one‐dimensional scheme. The matrix size is reduced and, at the same time, the CPU time is considerably saved owing to the reduction of stencil points. This Newton linearization method is computationally efficient and is demonstrated to outperform the classical Newton method through computational exercises. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, we choose the points and weights of the Gauss–Jacobi, Gauss–Radau–Jacobi and Gauss–Lobatto–Jacobi quadrature rules that optimize the number of operations for the mass and stiffness matrices of the high‐order finite element method. The procedure is particularly applied to the mass and stiffness matrices using the tensor‐based nodal and modal shape functions given in (Int. J. Numer. Meth. Engng 2007; 71 (5):529–563). For square and hexahedron elements, we show that it is possible to use tensor product of the 1D mass and stiffness matrices for the Poisson and elasticity problem. For the triangular and tetrahedron elements, an analogous analysis given in (Int. J. Numer. Meth. Engng 2005; 63 (2):1530–1558) was considered for the selection of the optimal points and weights for the stiffness matrix coefficients for triangles and mass and stiffness matrices for tetrahedra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
On the basis of the projection method, a higher order compact finite difference algorithm, which possesses a good spatial behavior, is developed for solving the 2D unsteady incompressible Navier–Stokes equations in primitive variable. The present method is established on a staggered grid system and is at least third‐order accurate in space. A third‐order accurate upwind compact difference approximation is used to discretize the non‐linear convective terms, a fourth‐order symmetrical compact difference approximation is used to discretize the viscous terms, and a fourth‐order compact difference approximation on a cell‐centered mesh is used to discretize the first derivatives in the continuity equation. The pressure Poisson equation is approximated using a fourth‐order compact difference scheme constructed currently on the nine‐point 2D stencil. New fourth‐order compact difference schemes for explicit computing of the pressure gradient are also developed on the nine‐point 2D stencil. For the assessment of the effectiveness and accuracy of the method, particularly its spatial behavior, a problem with analytical solution and another one with a steep gradient are numerically solved. Finally, steady and unsteady solutions for the lid‐driven cavity flow are also used to assess the efficiency of this algorithm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Based on completely three‐dimensional elasticity theory, a refined global–local higher‐order theory is presented as enhanced version of the classical global–local theory proposed by Li and Liu (Int. J. Numer. Meth. Engng. 1997; 40 :1197–1212), in which the effect of transverse normal deformation is enhanced. Compared with the previous higher‐order theory, the refined theory offers some valuable improvements these are able to predict accurately response of laminated plates subjected to thermal loading of uniform temperature. However, the previous higher‐order theory will encounter difficulty for this problem. A refined three‐noded triangular element satisfied the requirement of C1 weak‐continuity conditions in the inter‐element is also presented. The results of numerical examples of moderately thick laminated plates and even thick plates with span/thickness ratios L/h = 2 are given to show that in‐plane stresses and transverse shear stresses can be reasonably predicted by the direct constitutive equation approach without smooth technique. In order to accurately obtain transverse normal stresses, the local equilibrium equation approach in one element is employed herein. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Three‐dimensional higher‐order eXtended finite element method (XFEM)‐computations still pose challenging computational geometry problems especially for moving interfaces. This paper provides a method for the localization of a higher‐order interface finite element (FE) mesh in an underlying three‐dimensional higher‐order FE mesh. Additionally, it demonstrates, how a subtetrahedralization of an intersected element can be obtained, which preserves the possibly curved interface and allows therefore exact numerical integration. The proposed interface algorithm collects initially a set of possibly intersecting elements by comparing their ‘eXtended axis‐aligned bounding boxes’. The intersection method is applied to a highly reduced number of intersection candidates. The resulting linearized interface is used as input for an elementwise constrained Delaunay tetrahedralization, which computes an appropriate subdivision for each intersected element. The curved interface is recovered from the linearized interface in the last step. The output comprises triangular integration cells representing the interface and tetrahedral integration cells for each intersected element. Application of the interface algorithm currently concentrates on fluid–structure interaction problems on low‐order and higher‐order FE meshes, which may be composed of any arbitrary element types such as hexahedra, tetrahedra, wedges, etc. Nevertheless, other XFEM‐problems with explicitly given interfaces or discontinuities may be tackled in addition. Multiple structures and interfaces per intersected element can be handled without any additional difficulties. Several parallelization strategies exist depending on the desired domain decomposition approach. Numerical test cases including various geometrical exceptions demonstrate the accuracy, robustness and efficiency of the interface handling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Component mode‐based model‐order reduction (MOR) methods like the Craig–Bampton method or the Rubin method are known to be limited to structures with small coupling interfaces. This paper investigates two interface‐reduction methods for application of MOR to systems with large coupling interfaces: for the Craig–Bampton method a direct reduction method based on strain energy considerations is investigated. Additionally, for the Rubin method an iterative reduction scheme is proposed, which incrementally constructs the reduction basis. Hereby, attachment modes are tested if they sufficiently enlarge the spanned subspace of the current reduction basis. If so, the m‐orthogonal part is used to augment the basis. The methods are applied to FE–BE coupled systems in order to predict the vibro‐acoustic behavior of structures, which are partly immersed in water. Hereby, a strong coupling scheme is employed, since for dense fluids the feedback of the acoustic pressure onto the structure is not negligible. For two example structures, the efficiency of the reduction methods with respect to numerical effort, memory consumption and computation time is compared with the exact full‐order solution. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Model Order Reduction (MOR) methods are extremely useful to reduce processing time, even nowadays, when parallel processing is possible in any personal computer. This work describes a method that combines Proper Orthogonal Decomposition (POD) and Ritz vectors to achieve an efficient Galerkin projection, which changes during nonlinear solving (online analysis). It is supported by a new adaptive strategy, which analyzes the error and the convergence rate for nonlinear dynamical problems. This model order reduction is assisted by a secant formulation which is updated by the Broyden‐Fletcher‐Goldfarb‐Shanno (BFGS) formula to accelerate convergence in the reduced space, and a tangent formulation when correction of the reduced space is needed. Furthermore, this research shows that this adaptive strategy permits correction of the reduced model at low cost and small error. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
16.
17.
Two‐dimensional (2D) perovskites have proved to be promising semiconductors for photovoltaics, photonics, and optoelectronics. Here, a strategy is presented toward the realization of highly efficient, sub‐bandgap photodetection by employing excitonic effects in 2D Ruddlesden–Popper‐type halide perovskites (RPPs). On near resonance with 2D excitons, layered RPPs exhibit degenerate two‐photon absorption (D‐2PA) coefficients as giant as 0.2–0.64 cm MW?1. 2D RPP‐based sub‐bandgap photodetectors show excellent detection performance in the near‐infrared (NIR): a two‐photon‐generated current responsivity up to 1.2 × 104 cm2 W?2 s?1, two orders of magnitude greater than InAsSbP‐pin photodiodes; and a dark current as low as 2 pA at room temperature. More intriguingly, layered‐RPP detectors are highly sensitive to the light polarization of incoming photons, showing a considerable anisotropy in their D‐2PA coefficients (β[001][011] = 2.4, 70% larger than the ratios reported for zinc‐blende semiconductors). By controlling the thickness of the inorganic quantum well, it is found that layered RPPs of (C4H9NH3)2(CH3NH3)Pb2I7 can be utilized for three‐photon photodetection in the NIR region.  相似文献   

18.
Analytical formulations and solutions for the stress analysis of simply supported antisymmetric angle-ply composite and sandwich plates hitherto not reported in the literature based on a higher order refined computational model with twelve degrees of freedom already reported in the literature are presented. The theoretical model presented herein incorporates laminate deformations which account for the effects of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of in-plane displacements with respect to the thickness coordinate thus modelling the warping of transverse cross sections more accurately and eliminating the need for shear correction coefficients. In addition, two higher order computational models, one with nine and the other with five degrees of freedom already available in the literature are also considered for comparison. The equations of equilibrium are obtained using Principle of Minimum Potential Energy (PMPE). Solutions are obtained in closed form using Navier’s technique by solving the boundary value problem. Accuracy of the theoretical formulations and the solution method is first ascertained by comparing the results with that already available in the literature. After establishing the accuracy of the solutions, numerical results with real properties using all the computational models are presented for the stress analysis of multilayer antisymmetric angle-ply composite and sandwich plates, which will serve as a benchmark for future investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号