首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we study the impact of time-selective fading on quasi-orthogonal space-time (ST) coded orthogonal frequency-division multiplexing (OFDM) systems over frequency-selective Rayleigh fading channels. OFDM is robust against frequency-selective fading, but it is more vulnerable to time-selective fading than single-carrier systems. In ST-OFDM, channel time variations cause not only intercarrier interference among different subcarriers in one OFDM symbol, but also intertransmit-antenna interference. We quantify the impact of time-selective fading on the performance of quasi-orthogonal ST-OFDM systems by deriving, via an analytical approach, the expressions of carrier-to-interference and signal-to-interference-plus-noise ratios. We observe that system error performance is insensitive to changes in vehicle speeds and the channel power-delay profile, but very sensitive to changes in the number of subcarriers. We also evaluate the performance of five different detection schemes in the presence of time-selective fading. We show that although there exist differences in their relative performances, all these detection schemes suffer from an irreducible error floor.  相似文献   

2.
Bit Interleaved Time-Frequency Coded Modulation for OFDM Systems Over Time-Varying Channels Orthogonal frequency-division multiplexing (OFDM) is a promising technology in broadband wireless communications with its ability in transforming a frequency selective fading channel into multiple flat fading channels. However, the time-varying characteristics of wireless channels induce the loss of orthogonality among OFDM sub-carriers, which was generally considered harmful to system performance. In this paper, we propose a bit interleaved time–frequency coded modulation (BITFCM) scheme for OFDM to achieve both time and frequency diversity inherent in broadband time-varying channels. We will show that the time-varying characteristics of the channel are beneficial to system performance. Using the BITFCM scheme and for relatively low maximum normalized Doppler frequency, a reduced complexity Maximum Likelihood (ML) decoding approach is proposed to achieve good performance with low complexity as well. For high maximum normalized Doppler frequency, the inter-carrier interference (ICI) can be large and an error floor will be induced. To solve this problem, we propose two ICI mitigation schemes by taking advantage of the second order channel statistics and the complete channel information, respectively. It will be shown that both schemes can reduce the ICI significantly.  相似文献   

3.
In this article, we propose a time-spreaded quasi-orthogonal space-frequency coded OFDM system with constellation rotation. A constellation rotated quasi-orthogonal OFDM system could offer full rate and full diversity in a frequency selective fading channel. Time spreading can give additional time diversity gain in a fast fading channel. Assuming that complex channel gains between adjacent subcarriers are approximately equal, we develop a coding scheme for 4 × 1 MISO transceiver and its BER performance is evaluated for different Doppler frequencies in an OFDM system. The simulation results show that 2 dB gain can be achieved at BER of 10−3 using the proposed scheme compared to a scheme without time spreading and constellation rotation when 512 subcarriers are used at maximum Doppler frequency of 300 Hz. Also, the proposed system is analyzed for different delay spread of the channel and the results show that if adjacent subcarriers are correlated, it is better in SF-OFDM decoding.  相似文献   

4.
Shallow underwater acoustic (UWA) channel exhibits rapid temporal variations, extensive multipath spreads, and severe frequency-dependent attenuations. So, high data rate communication with high spectral efficiency in this challenging medium requires efficient system design. Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO–OFDM) is a promising solution for reliable transmission over highly dispersive channels. In this paper, we study the equalization of shallow UWA channels when a MIMO–OFDM transmission scheme is used. We address simultaneously the long multipath spread and rapid temporal variations of the channel. These features lead to interblock interference (IBI) along with intercarrier interference (ICI), thereby degrading the system performance. We describe the underwater channel using a general basis expansion model (BEM), and propose time-domain block equalization techniques to jointly eliminate the IBI and ICI. The block equalizers are derived based on minimum mean-square error and zero-forcing criteria. We also develop a novel approach to design two time-domain per-tone equalizers, which minimize bit error rate or mean-square error in each subcarrier. We simulate a typical shallow UWA channel to demonstrate the desirable performance of the proposed equalization techniques in Rayleigh and Rician fading channels.  相似文献   

5.
李素月  郑宝玉 《信号处理》2014,30(11):1363-1369
在高速移动环境下,无线信道会同时经历时间选择性和频率选择性衰落,即所谓的快速时变信道,也称之为双选择性信道。最初的发射分集Alamouti编码方案是针对时不变平坦信道提出的,不能直接应用于快速时变信道。此外,OFDM 系统在双选信道下遭受的载波间干扰(ICI)不可忽视。因此,发射分集MISO OFDM系统在双选择性信道下既节能又有效的信号恢复是有挑战的。本文基于双选择性信道的基扩展模型(BEM)表示,研究了一种有效的可动态分组的混合干扰消除(HIC)信道均衡方案。仿真结果表明,提出的方案,与传统的MMSE均衡相比,计算复杂度大大降低的同时性能显著提高,计算量的降低减少了能量消耗,达到节能的目的;与现有的关于发射分集的信道均衡方案相比,表现出性能和复杂度的较好折中;此外,在信道信息完美已知的假设下,随着移动速度的提高,误码性能没有损失。   相似文献   

6.
Fast frequency hopping/orthogonal frequency division multiplexing (FFH/OFDM) has been previously proposed to achieve frequency diversity over frequency selective channels. However, the performances of the FFH/OFDM scheme have been usually calculated using simulations over empirical channel models in earlier works. The main aim of this paper is to theoretically expose the diversity of the FFH/OFDM signal over statistical models, specifically Rayleigh distributed, for frequency selective fading channels. In order to achieve this aim, we first derive the decision variables and the signal‐to‐interference noise ratios of the FFH/OFDM signal at the output of minimum mean square error and zero forcing receivers. For various levels of quadrature amplitude modulation used in FFH/OFDM, the performances are calculated and validated via simulations. The results show that FFH/OFDM in case of zero forcing equalization does not provide any diversity gain even over a frequency selective channel. However, in case of minimum mean square error equalization, it brings significant diversity gain at high signal‐to‐noise ratio (SNR) values with the rise of number of sub‐carriers. Moreover, the FFH/OFDM with four quadrature amplitude modulation scheme provides better performance than that of the conventional OFDM even at low SNR values, as well as a significant diversity gain at high SNR values. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Finite Radon transform (FRAT) mapper has the ability to increase orthogonality of sub-carriers, it is non sensitive to channel parameters variations, and has a small constellation energy compared with conventional fast Fourier transform (FFT) based orthogonal frequency division multiplexing (OFDM). It is also able to work as a good interleaver which significantly reduces the bit error rate (BER). Due to its good orthogonality, discrete Multiwavelet transform (DMWT) is attractive for implementation in OFDM systems which reduces inter-symbol interference (ISI) and inter-carrier interference (ICI) and eliminates the need for cyclic prefix and increases the spectral efficiency of the design. In this paper both FRAT and DMWT are implemented in a new design for OFDM. The new structure was tested and compared with conventional FFT-based OFDM, Radon-based OFDM, and DMWT-based OFDM for additive white Gaussian noise channel, flat fading channel, and multi-path selective fading channel. Simulation tests were generated for different channels parameters values. The obtained results showed that proposed system has increased spectral efficiency, reduced ISI and ICI, and improved BER performance compared with other systems.  相似文献   

8.
A loss of subchannel orthogonality due to time-variant multipath channels in orthogonal frequency division multiplexing (OFDM) systems leads to interchannel interference (ICI) which increases the error floor in proportion to the Doppler frequency. A simple frequency-domain equalization technique which can compensate for the effect of ICI in a multipath fading channel is proposed. In this technique, the equalization of the received OFDM signal is achieved by using the assumption that the channel impulse response (CIR) varies in a linear fashion during a block period and by compensating for the ICI terms that significantly affect the bit-error rate (BER) performance  相似文献   

9.
Nonlinear blanking and clipping methods are widely used in Orthogonal Frequency Division Multiplexing (OFDM) receiver to mitigate impulse interference. To quantitatively analyze the reliability performance of nonlinear OFDM receivers with pulse blanking and clipping based on peak value threshold, the symbol error rate (SER) performance of nonlinear OFDM receiver over frequency selective Rayleigh and Ricean fading channels is presented. Firstly, the analytical expressions of instantaneous output signal-to-interference and noise ratio (SINR) for nonlinear OFDM receivers with regular method, peak value blanking and peak value clipping are derived. Then, the SER performance of nonlinear OFDM receiver over frequency selective Rayleigh and Ricean fading channels is given based on the SINR expressions. Finally, simulation results are demonstrated to show good agreement with theoretical results. It has been observed that the peak value blanking method has achieved the best SER performance, and the inter-carrier interference based on the peak value blanking and peak value clipping will lead to error floor.  相似文献   

10.
郦荣  陈建民 《无线电工程》2010,40(2):22-24,31
针对高速移动环境下多普勒频偏造成信道的快衰落和正交频分复用(OFDM)系统中子载波间干扰(ICI)的问题,提出了一种适合快衰落环境的OFDM系统子载波间干扰抑制算法。此算法用线性变化模型来近似一个OFDM符号周期内的信道冲激响应,并以此为基础采用迭代MMSE均衡方法抑制载波间干扰。分析和仿真结果表明,此方法能有效地保证载波间的正交性,从而改善了OFDM系统的误码率(BER)性能。  相似文献   

11.
周小平  方勇  汪敏 《信号处理》2010,26(12):1833-1839
在多输入多输出(MIMO)-正交频分复用(OFDM) 系统中,怎样在较高频谱利用率的情况下对快时变信道进行较为准确的估计是一个具有挑战性的课题。该文在利用压缩感知理论可提高系统频谱利用率的基础上,提出了一种适合于快时变环境下MIMO-OFDM 系统的稀疏自适应信道估计方法。该方法不再受到奈奎斯特采样频率条件约束,避免了传统导频辅助信道估计方法频谱利用率低的缺点。该文方法通过构建多天线群时频结构特征稀疏基,利用多天线间和群时变OFDM符号内信道冲激响应具有更强稀疏性的特点,对MIMO-OFDM快衰落信道进行稀疏变换。由于实际MIMO-OFDM快衰落信道往往处于频率选择性、时变性和多种干扰并存的复杂环境,受到干扰的信道参数对系统而言是未知,采用该方法克服了现有基于压缩感知理论的信道估计方法需要预先知道信道冲激响应稀疏度才能重构信道参数的不足,在信道稀疏度未知道的情况下,运用稀疏自适应的方法来对不同时频结构特征的信道参数进行估计。仿真结果表明所提估计方法具有对快时变信道参数估计的鲁棒性和较高频谱利用率,且均方误差小。   相似文献   

12.
The efficiency of data transmission over fading channels in orthogonal frequency division multiplexing (OFDM) systems depends on the employed interleaving method. In this study, we propose an improved chaotic interleaving scheme which aims to improve the performance of OFDM system under fading channel. In the proposed scheme, the binary data is interleaved with chaotic Baker map prior to the modulation process. In the sequel, significant degree of encryption is being added during data transmission. The performance of the proposed approach is tested on the conventional fast Fourier transform OFDM, discrete wavelet transform OFDM, and discrete cosine transform OFDM with and without chaotic interleaving. Furthermore, an expectation–maximization (EM) algorithm is proposed for improving channel impulse response (CIR) estimation based on a maximum likelihood principle. The proposed scheme makes use of EM algorithm to update the channel estimates until convergence is reached. The simulation results show the efficiency of the proposed algorithms under Rayleigh fading environments where the symbol error rate essentially coincides with that of the perfect channel case after the fifth EM iteration.  相似文献   

13.
A closed-form formula for symbol-error rate (SER) of an orthogonal frequency-division multiplexing (OFDM) system with M-ary differential phase-shift keying (MDPSK) in frequency domain over Rayleigh fading channels is obtained. It is found that, by MDPSK in frequency domain, identical SERs can be achieved on all subcarriers. However, both time and frequency dispersion in the channel will introduce error floors. A comparison between OFDM-MDPSK in frequency domain and that in time domain reveals that the former system offers superior SER performance in a fast fading environment, while the latter performs better if the channel is mainly frequency selective. Moreover, the former system has lower implementation complexity.  相似文献   

14.
Performance analysis of adaptive interleaving for OFDM systems   总被引:7,自引:0,他引:7  
We proposed a novel interleaving technique for orthogonal frequency division multiplexing (OFDM), namely adaptive interleaving, which can break the bursty channel errors more effectively than traditional block interleaving. The technique rearranges the symbols according to instantaneous channel state information of the OFDM subcarriers so as to reduce or minimize the bit error rate (BER) of each OFDM frame. It is well suited to OFDM systems because the channel state information (CSI) values of the whole frame could be estimated at once when transmitted symbols are framed in the frequency dimension. Extensive simulations show that the proposed scheme can greatly improve the performance of the coded modulation systems utilizing block interleaving. Furthermore, we show that the adaptive interleaving out performs any other static interleaving schemes, even in the fast fading channel (with independent fading between symbols). We derived a semi-analytical bound for the BER of the adaptive interleaving scheme under correlated Rayleigh fading channels. Furthermore, we discussed the transmitter-receiver (interleaving pattern) synchronization problem  相似文献   

15.
Orthogonal frequency division multiplexing (OFDM) has become a very popular method for high data rate wireless communications because of its advantages over single carrier modulation schemes on multipath, frequency selective fading channels. However, intercarrier interference, due to Doppler frequency shifts, and multipath fading severely degrade the performance of OFDM systems. Estimation of channel parameters is required at the receiver. In this paper, we present a channel modeling and estimation method based on the time-frequency representation of the received signal. The discrete evolutionary transform provides a time-frequency procedure to obtain a complete characterization of the multipath, fading, and frequency selective channels. Simulations are used to illustrate the performance of the proposed procedure and to compare it with other time-varying channel estimation techniques.  相似文献   

16.
This paper focuses on transmit beamforming for multiple-input multiple-output optical wireless communication (OWC) systems with intensity modulation and direct detection (IM/DD). OWC with IM/DD requires the transmitted signals to be nonnegative, for which existing beamforming schemes developed for radio frequency systems cannot be applied directly. We propose effective schemes for OWC over frequency flat and frequency selective channels. For frequency flat fading, the property of the beamforming vector is derived. For frequency selective fading, bit-error rate performances of the proposed scheme with zero-forcing and minimum mean-square error frequency domain equalization receivers are derived, and a suboptimal beamforming vector for frequency selective fading channels is proposed. Compared with asymmetrically clipped optical orthogonal frequency division multiplexing based frequency domain beamforming, the proposed scheme needs much less feedback information and has a better error performance.  相似文献   

17.
Timing recovery for OFDM transmission   总被引:29,自引:0,他引:29  
Orthogonal frequency division multiplexing (OFDM) is an effective modulation technique for high-rate and high-speed transmission over frequency selective fading channels. However, OFDM systems can be extremely sensitive and vulnerable to synchronization errors. In this paper, we present a scheme for performing timing recovery that includes symbol synchronization and sampling clock synchronization in OFDM systems. The scheme is based on pilot subcarriers. In the scheme, we use a path time delay estimation method to improve the accuracy of the correlation-based symbol synchronization methods, and use a delay-locked loop (DLL) to do the sampling clock synchronization. It is shown that by using this scheme, the mean square values of the symbol timing estimation error can be decreased by several orders of magnitude compared to the common correlation methods in both the AWGN and multipath fading channels. In addition, the scheme can track the symbol timing drift caused by the sampling clock frequency offsets  相似文献   

18.
Orthogonal frequency division multiplexing (OFDM) technique, when used in wireless environments, is known to be robust against frequency selective fading. However, when the channel shows time selective fading, rapid variations destroy the subcarrier orthogonality and introduce inter-carrier interference (ICI). The use of ICI mitigation schemes requires the availability of channel state information (CSI) at the receiver, which is a non-trivial task in fast fading systems. In our work, we have addressed the problem of estimation of rapidly varying channels for OFDM systems. The channel is modeled using complex exponentials as basis functions and the estimation process makes use of the cyclic prefix (CP) part available in OFDM symbols as training. The system is viewed as a state space model and Kalman filter is employed to estimate the channel. Following this, a time domain ICI mitigation filter that maximizes the received SINR (signal to interference plus noise ratio) is employed for equalization. This method performs considerably well in terms of MSE as well as BER at very high Doppler spreads.
Prerana GuptaEmail:
  相似文献   

19.
This paper studies the application of the constant modulus algorithm (CMA) in land mobile low earth orbit (LEO) satellite communication systems. Two propagation phenomena prevail in narrow band land mobile LEO satellite channel, namely, adjacent channel interference (ACI) and frequency‐non‐selective fading. The performance of CMA for ACI cancellation and the behaviours of CMA in frequency‐non‐selective fading channels are evaluated using a digital beamforming (DBF) array antenna simulation scheme. All these evaluations are based on a simple but efficient channel model which provides a good and fast simulation method for land mobile LEO satellite channels. The restricted Jakes Doppler power spectral density (psd) function is incorporated into the model to ensure that it will be appropriate for the evaluation of a DBF antenna. Our results reveal that CMA can reject ACI and work well in frequency‐non‐selective fading channels. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we study a single carrier space–time block-spread (STBS) with frequency domain equalization combined with direct-spread code division multiple access (CDMA) which we term, SCFDE-STBS-CDMA. We propose a novel SCFDE space–time scheme for CDMA that achieves multiuser-interference free reception and performs well in both slow and fast fading frequency selective channel. The orthogonality among the users is preserved at the receiver allowing a multiuser-free MUI-free detection in slow fading channel. In fast fading channel, we proposed a MMSE detector that exploits the time diversity of the fast fading channels. In the conventional counterpart scheme proposed in the literature, the length of the spreading factor affect negatively the performance of the system when the channel is fast fading while in the proposed scheme, the spreading factor is an additional degree of freedom that do not degrade the system performance. Since the maximum number of users supported depends on the spreading factor, the proposed scheme can then maintain more users than the conventional one in fast fading channels. The bit-error rate (BER) performance of the proposed scheme is analyzed and compared with the conventional approach in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号