首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiO2-SiO2 with various compositions prepared by the coprecipitation method and vanadia loaded on TiO2-SiO2 were investigated with respect to their physico-chemical characteristics and catalytic behavior in SCR of NO by NH3 and in the undesired oxidation of SO2 to SO3, using BET, XRD, XPS, NH3-TPD, acidity measurement by the titration method and activity test. TiO2-SiO2, compared with pure TiO2, exhibits a remarkably stronger acidity, a higher BET surface area, a lower crystallinity of anatase titania and results in allowing a good thermal stability and a higher vanadia dispersion on the support up to high loadings of 15 wt% V2O5. The SCR activity and N2 selectivity are found to be more excellent over vanadia loaded on TiO2-SiO2 with 10–20 mol% of SiO2 than over that on pure TiO2, and this is considered to be associated with highly dispersed vanadia on the supports and large amounts of NH3 adsorbed on the catalysts. With increasing SiO2 content, the remarkable activity decrease in the oxidation of SO2 to SO3, favorable for industrial SCR catalysts, was also observed, strongly depending on the existence of vanadium species of the oxidation state close to V4+ on TiO2-SiO2, while V5+ exists on TiO2, according to XPS. It is concluded that vanadia loaded on Ti-rich TiO2-SiO2 with low SiO2 content is suitable as SCR catalysts for sulfur-containing exhaust gases due to showing not only the excellent de-NOx activity but also the low SO2 oxidation performance.  相似文献   

2.
为了提高TiO2的光催化氧化脱硫(PODS)活性,利用负载和复合的协同作用,将TiO2与g-C3N4复合,并负载于双介孔二氧化硅(BMMS)上,制备了TiO2–g-C3N4/BMMS。以含二苯并噻吩(DBT)的十二烷溶液为模拟油,评价了催化剂的催化性能;优化了反应条件并提出了催化反应机理。结果表明:TiO2–g-C3N4/BMMS具有明显的双介孔结构,TiO2与g-C3N4已实现复合并负载于BMMS上,TiO2–g-C3N4活性组分在载体上分散良好,与单一TiO2相比对光的吸收能力增强,催化活性有明显提高,优化后的反应条件为,催化剂用量3%(质量分数),O/S摩尔比为10:1,萃取剂与模拟油体积比为1:1,此时脱硫率可达96.6%,且重复使用8次后脱硫率仍保持85%以上,PODS过程中的主要活性中间物种是·O2和h+。  相似文献   

3.
The effect of tungsten and barium on the thermal stability of V2O5/TiO2 catalyst for NO reduction by NH3 was examined over a fixed bed flow reactor system. The activity of V2O5/sulfated TiO2 catalyst gradually decreased with respect to the thermal aging time at 600 °C. The addition of tungsten to the catalyst surface significantly enhanced the thermal stability of V2O5 catalyst supported on sulfated TiO2. On the basis of Raman and XRD measurements, the tungsten on the catalyst surface was identified as suppressing the progressive transformation of monomeric vanadyl species into crystalline V2O5 and of anatase into rutile phase of TiO2. However, the NO removal activity of V2O5/sulfated TiO2 catalyst including barium markedly decreased after a short aging time, 6 h at 600 °C. This may be due to the transformation of vanadium species to inactive V–O–Ba compound by the interaction with BaO which was formed by the decomposition of BaSO4 on the catalyst surface at high reaction temperature of 600 °C. The addition of SO2 to the feed gas stream could partly restore the NO removal activity of thermally aged V2O5/sulfated TiO2 catalyst containing barium.  相似文献   

4.
To get the low temperature sulfur resistant V2O5/TiO2 catalysts quantum chemical calculation study was carried out. After selecting suitable promoters (Se, Sb, Cu, S, B, Bi, Pb and P), respective metal promoted V2O5/TiO2 catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD) and Brunner Emmett Teller surface area (BET-SA). Se, Sb, Cu, S promoted V2O5/TiO2 catalysts showed high catalytic activity for NH3 selective catalytic reduction (NH3-SCR) of NOx carried at temperatures between 150 and 400 °C. The conversion efficiency followed in the order of Se > Sb > S > V2O5/TiO2 > Cu but Se was excluded because of its high vapor pressure. An optimal 2 wt% ‘Sb’ loading was found over V2O5/TiO2 for maximum NOx conversion, which also showed high resistance to SO2 in presence of water when compared to other metal promoters. In situ electrical conductivity measurement was carried out for Sb(2%)/V2O5/TiO2 and compared with commercial W(10%)V2O5/TiO2 catalyst. High electrical conductivity difference (ΔG) for Sb(2%)/V2O5/TiO2 catalyst with temperature was observed. SO2 deactivation experiments were carried out for Sb(2%)/V2O5/TiO2 and W(10%)/V2O5/TiO2 at a temperature of 230 °C for 90 h, resulted Sb(2%)/V2O5/TiO2 was efficient catalyst. BET-SA, X-ray photoelectron spectroscopy (XPS) and carbon, hydrogen, nitrogen and sulfur (CHNS) elemental analysis of spent catalysts well proved the presence of high ammonium sulfate salts over W(10%)/V2O5/TiO2 than Sb(2%)/V2O5/TiO2 catalyst.  相似文献   

5.
Ru/TiO2 catalysts were prepared by spray reaction (SPR) and conventional impregnation (IMP) methods. The catalytic activities of SPR fine particles were much higher than those of IMP catalysts for CO2 hydrogenation. A high temperature reduction greatly promoted the activity of SPR catalyst. A model of surface structure was proposed which exhibits the enhancement of decoration and the formation of more boundaries over spr-Ru/TiO2. The high activity of SPR catalyst is attributed to the occurrence of new active sites at the metal–support perimeters and not any SMSI phenomenon. EXAFS reveals that the Ru atom was interacting with TiO2 by oxygen atom so strongly on the SPR catalysts that a part of the Ru atoms, located near the internal interface between Ru particles and TiO2 support, existed as Run+ (n<4) cations even if SPR catalyst was subjected to a high temperature reduction. These Run+ cations are responsible for the inhibition of SMSI formation over SPR catalysts.  相似文献   

6.
Two series of catalysts, V2O5/TiO2 and modified V2O5/TiO2, were prepared with a conventional impregnation method. They were tested in the selective oxidation of toluene to benzoic acid under microwave irradiation. The reaction conditions were optimized over V2O5/TiO2. It was found that in the microwave catalytic process the optimum reactor bed temperature of the titled reaction decreases to 500 K (600 K in the conventional process). The modification of V2O5/TiO2 with MoO3, WO3, Nb2O5 or Ta2O5, which has no negative influence on the reaction in the conventional catalytic process, can greatly promote the catalytic activities in the microwave process, leading to a high yield of benzoic acid (41%). The effects of microwave electromagnetic field on the catalysts are discussed.  相似文献   

7.
The coupled photocatalyst WO3/TiO2 is prepared by ball milling by doping WO3 into TiO2 and using H2O solution as disperser. The coupled photocatalyst WO3/TiO2 is characterized by UV–VIS diffuse reflection spectrum, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Transmission electron microscopy (TEM). The results show that the optimum percentage of WO3 doped is 3% and that the photocatalytic activity of the coupled WO3/TiO2 photocatalyst is much higher than that of TiO2 and WO3–TiO2 with no ball milling. Compared with TiO2, the photoexcited wavelength range of the WO3/TiO2 photocatalyst red-shifts about 50 nm, and the light absorption intensity is also improved. The crystal phase of TiO2 is not changed and new crystal phases are not found during the process of ball milling. WO3 and TiO2 coupled highly, forming the WO3/TiO2 photocatalyst. The increased photocatalytic activity of the coupled photocatalyst may be attributed to the enhance charge separation efficiency and the extend wavelength range of photoexcitation.  相似文献   

8.
董毅  王彤文 《工业催化》2017,25(10):27-33
在多巴胺修饰的水基TiO_2纳米微粒(TiO_2NPs)悬浮液中,以正硅酸乙酯为硅源,十六烷基三甲基溴化铵为模板剂,分别采用碱性水热方法或酸性溶胶-凝胶方法,制备了有序介孔TiO_2-SiO_2(TiO_2NPs/MCM-41或TiO_2NPs/SBA-3)。采用XRD、TEM、ICP和N2吸附-脱附实验对样品进行表征。结果表明,制备的介孔TiO_2-SiO_2在TiO_2高负载质量分数(23.98%TiO_2NPs/MCM-41、17.27%TiO_2NPs/SBA-3)时,仍能保持长程有序的介孔氧化硅结构。TiO_2NPs随机地嵌入在有序介孔氧化硅孔道所组成的网络结构中。在可见光下催化甲基橙降解反应中,反应时间120 min时,在P25上甲基橙相对浓度降为57%,在TiO_2NPs/MCM-41上降为33%,而在TiO_2NPs/SBA-3上降为5.7%。  相似文献   

9.
Mixed oxides of Co3O4–TiO2 have shown the highest catalytic activity for the reduction of SO2 by CO among catalysts that have been developed so far. Almost zero conversion was observed with cobalt alone, whereas a high conversion was obtained with TiO2 especially at high temperatures. There existed a strong synergistic promotional effect in the conversion of SO2 when cobalt was mixed with TiO2. The synergistic effect observed with mixed oxides is caused by simultaneous contributions from two different reaction routes via COS intermediate mechanism and modified redox mechanism. The synergistic effect that is caused by the COS mechanism has a smaller amount of contribution in the conversion increase and remains almost constant with an increase in the reaction temperature. A larger portion of the synergistic effect is contributed from the modified redox mechanism especially at low temperatures, but the effect disappears at temperatures above 450°C. It is found that the introduction of cobalt into TiO2 produces COS by the reaction between sulfided CoS2 and CO even at low temperatures. The COS intermediate can react with SO2 to produce an additional sulfur via the COS intermediate mechanism, and also behaves as a strong reductant to keep oxygen vacancies on the TiO2 in a high concentration for the production of sulfur via modified redox mechanism.  相似文献   

10.
The physico-chemical characteristics and the reactivity of sub-monolayer V2O5-WO3/TiO2 deNOx catalysts is investigated in this work by EPR, FT-IR and reactivity tests under transient conditions. EPR indicates that tetravalent vanadium ions both in magnetically isolated form and in clustered, magnetically interacting form are present over the TiO2 surface. The presence of tungsten oxide stabilizes the surface VIV and modifies the redox properties of V2O5/TiO2 samples. Ammonia adsorbs on the catalysts surface in the form of molecularly coordinated species and of ammonium ions. Upon heating, activation of ammonia via an amide species is apparent. V2O5-WO3/TiO2 catalysts exhibits higher activity than the binary V2O5/TiO2 and WO3/TiO2 reference sample. This is related to both higher redox properties and higher surface acidity of the ternary catalysts. Results suggest that the catalyst redox properties control the reactivity of the samples at low temperatures whereas the surface acidity plays an important role in the adsorption and activation of ammonia at high temperatures.  相似文献   

11.
李锦卫  朱佳 《工业催化》2015,23(12):1002-1007
采用沉积-沉淀法制备CuMnO_x/TiO_2新型甲苯燃烧催化剂,考察焙烧温度、Cu与Mn物质的量比、Cu和Mn总负载量、空速及水蒸汽含量对催化甲苯燃烧性能的影响。研究表明,焙烧温度500℃和Cu与Mn物质的量比为1∶1时,催化剂活性最好,反应温度250℃时,甲苯去除率为100%;水蒸汽的出现明显降低了甲苯转化率。XRD和H2-TPR表征结果表明,CuMnO_x/TiO_2催化剂的主要活性相为铜锰尖晶石(Cu1.5Mn1.5O4),它的存在降低了CuMnO_x/TiO_2催化剂的还原温度,是催化活性优良的主要原因。  相似文献   

12.
Vanadium oxide spread highly on TiO2 (anatase, A) and SnO2, and rather densely on TiO2 (rutile, R) and ZrO2 to make the monolayer in less than 4–5 V nm−2. Profile of acid site of the monolayer was measured by temperature programmed desorption of ammonia, and its relation with the surface oxidation state was studied. The acid site density was high on the V2O5/TiO2 (A) independent of the degree of oxidation. On the other hand, that of V2O5/TiO2 (R) and V2O5/ZrO2 depended on the oxidation state, and the high value of the concentration was observed on the oxidized one. The strength of acid site generated on the V2O5 monolayer on TiO2 was as high as on the HZSM-5 zeolite. Turnover frequency (TOF) of propane conversion, and product selectivity were measured in propane oxidation. Among tested oxides, the V2O5/TiO2 (A) showed the high TOF and selectivity to form propylene, while those loaded on TiO2 (R) and ZrO2 the small TOF and poor selectivity. Therefore, the reaction profile of activity and selectivity could be related with the extent of spreading and solid acidity. An idea of limit of the acid site density ca. 1.5 nm−2 on the monolayer was elucidated.  相似文献   

13.
Changbin Zhang  Hong He   《Catalysis Today》2007,126(3-4):345-350
The TiO2 supported noble metal (Au, Rh, Pd and Pt) catalysts were prepared by impregnation method and characterized by means of X-ray diffraction (XRD) and BET. These catalysts were tested for the catalytic oxidation of formaldehyde (HCHO). It was found that the order of activity was Pt/TiO2  Rh/TiO2 > Pd/TiO2 > Au/TiO2  TiO2. HCHO could be completely oxidized into CO2 and H2O over Pt/TiO2 in a gas hourly space velocity (GHSV) of 50,000 h−1 even at room temperature. In contrast, the other catalysts were much less effective for HCHO oxidation at the same reaction conditions. HCHO conversion to CO2 was only 20% over the Rh/TiO2 at 20 °C. The Pd/TiO2 and Au/TiO2 showed no activities for HCHO oxidation at 20 °C. The different activities of the noble metals for HCHO oxidation were studied with respect to the behavior of adsorbed species on the catalysts surface at room temperature using in situ DRIFTS. The results show that the activities of the TiO2 supported Pt, Rh, Pd and Au catalysts for HCHO oxidation are closely related to their capacities for the formation of formate species and the formate decomposition into CO species. Based on in situ DRIFTS studies, a simplified reaction scheme of HCHO oxidation was also proposed.  相似文献   

14.
G. Ramis  Li Yi  G. Busca 《Catalysis Today》1996,28(4):1528-380
The adsorption and transformation of ammonia over V2O5, V2O5/TiO2, V2O5-WO3/TiO2 and CuO/TiO2 systems has been investigated by FT-IR spectroscopy. In all cases ammonia is first coordinated over Lewis acid sites and later undergoes hydrogen abstraction giving rise either to NH2 amide species or to its dimeric form N2H4, hydrazine. Other species, tentatively identified as imide NH, nitroxyl HNO, nitrogen anions N2 and azide anions N3 are further observed over CuO/TiO2. The comparison of the infrared spectra of the species arising from both NH3 and N2H4 adsorbed over CuO/TiO2 strongly suggest that N2H4 is an intermediate in NH3 oxidation over this active selective catalytic reduction (SCR) and selective catalytic oxidation (SCO) catalysts. This implies that ammonia is activated in the form of NH2 species for both SCR and SCO, and it can later dimerize. Ammonia protonation to ammonium ion is detected over V2O5-based systems, but not over CuO/TiO2, in spite of the high SCR and SCO activity of this catalyst. Consequently Brönsted acidity is not necessary for the SCR activity.  相似文献   

15.
The catalytic photodegradation of phenol and 4-chlorophenol with white and UV light over TiO2, BaTi4O9 and Hollandite catalysts has been studied in our laboratories. BaTi4O9 and Hollandite catalysts were prepared by solid state reaction at 900°C and 1200°C, respectively. All the catalysts were characterized by different techniques such as surface area measurements by the BET method, atomic absorption spectroscopy and XRD. Photodegradation reaction experiments were monitored by HPLC analysis. The reaction intermediates: hydroquinone and 1,4-benzoquinone were identified by GC–MS analysis. The photocatalytic activities of these catalysts in the degradation of phenol and 4-chlorophenol were evaluated in comparison with titanium oxide. Experimental results showed that BaTi4O9 and Hollandite catalysts exhibit small photocatalytic activity as compared with TiO2.  相似文献   

16.
The effect of the TiO2–Al2O3 mixed oxide support composition on the hydrodesulfurization (HDS) of gasoil and the simultaneous HDS and hydrodenitrogenation (HDN) of gasoil+pyridine was studied over two series of CoMo and NiMo catalysts. The intrinsic activities for gasoil HDS and pyridine HDN were significantly increased by increasing the amount of TiO2 into the support, and particularly over rich- and pure-TiO2-based catalysts. It is suggested that the increase in activity be due to an improvement in reducing and sulfiding of molybdena over TiO2. The inhibiting effect of pyridine on gasoil HDS was found to be similar for all the catalysts, i.e., was independent of the support composition. The ranking of the catalysts for the gasoil HDS test differed from that obtained for the thiophene test at different hydrogen pressures. In the case of gasoil HDS, the activity increases with TiO2 content and large differences are observed between the catalysts supported on pure Al2O3 and pure TiO2. In contrast, in the case of the thiophene test, the pure Al2O3-based catalyst appeared relatively more active than the catalysts supported on mixed oxides. Also, in the thiophene test the difference in intrinsic activity between the pure Al2O3-based catalyst appeared relatively more active than the catalysts supported on mixed oxides. Also in the thiophene test, the difference in intrinsic activity between the pure Al2O3- and pure TiO2-based catalysts is relatively small and dependent on the H2 pressure used. Such differences in activity trend among the gasoil and the thiophene tests are due to a different sensitivity of the catalysts (by different support or promoter) to the experimental conditions used. The results of the effect of the H2 partial pressure on the thiophene HDS, and on the effect of H2S concentration on gasoil HDS demonstrate the importance of these parameters, in addition to the nature of the reactant, to perform an adequate catalyst ranking.  相似文献   

17.
采用高压水热法合成纳米锐钛矿相TiO2前驱体,通过H2SO4溶液浸渍制备系列新型SO42-/TiO2催化剂,采用XRD、TG-DTG和TEM对其结构和形貌进行表征,并用于催化醋酸与正丁醇的酯化反应,考察H2SO4溶液浓度、浸渍时间和反应时间对酯化率的影响。结果表明,在H2SO4浓度1 mol·L-1、浸渍时间12 h和反应时间180 min条件下,酯化率高达99.2%,催化剂具有优异的催化性能和较佳的重复使用性。  相似文献   

18.
We investigated the suppression of SO2 oxidation activity by vanadium oxide in Pt-based diesel oxidation catalyst using reaction experiments, temperature programmed desorption (TPD), infrared (IR) and X-ray photoelectron spectroscopy (XPS). There was no interaction between Pt and S indicated by the XPS results. SO2 was not adsorbed on Pt at room temperature indicated by the absence of peak arising from SO2 in SO2 TPD spectra. SO2 molecules were adsorbed on the hydroxyl groups of TiO2 and migrated to Pt particles to react with oxygen adsorbed on it. V2O5 decreased the adsorption of SO2 on TiO2 by the blockage of V2O5 on TiO2.  相似文献   

19.
The activity and selectivity of rhenium promoted cobalt Fischer–Tropsch catalysts supported on Al2O3, TiO2 and SiO2 have been studied in a fixed-bed reactor at 483 K and 20 bar. Exposure of the catalysts to water added to the feed deactivates the Al2O3 supported catalyst, while the activity of the TiO2 and SiO2 supported catalysts increased. However, at high concentrations of water both the SiO2 and TiO2 supported catalyst deactivated. Common for all catalysts was an increase in C5+ selectivity and a decrease in the CH4 selectivity by increasing the water partial pressure. The catalysts have been characterized by scanning transmission electron microscope (STEM), BET, H2 chemisorption and X-ray diffraction (XRD).  相似文献   

20.
采用超声辅助溶胶-凝胶法制备活化半焦负载B掺杂TiO_2光催化剂,即B-TiO_2/ASC。在相同实验条件下,分别在紫外和可见光下研究其对模拟烟气的光催化氧化脱硝性能。结果表明,在紫外和可见光下,B掺杂光催化剂的活性得到提高,在可见光下的活性增加更加显著,反应180 min后仍可保持80%以上的脱硝率。结合XRD和FT-IR分析,可以看出B以取代掺杂的方式存在于TiO_2中并且导致TiO_2表面缺陷。表面缺陷有助于光生载流子的分离,从而延长光生电子的寿命并增加参与光催化反应的光生电子数量,从而产生更多的羟基自由基氧化NO,最终提高光催化脱硝率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号