首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
提出了一种联合使用硬C均值(hard C-mean,HCM) 聚类算法和支持向量机(support vector machine,SVM)的电力系统短期负荷预测方法。与目前采用单一SVM的负荷预测方法相比,考虑了电力负荷变化的周期性特征,依据输入样本的相似度选取训练样本,即通过对学习样本的聚类选用同类特征数据作为预测输入,保证了数据特征的一致性,强化了历史数据规律。实际应用证明了该方法的有效性,该方法不仅提高了负荷预测精度,还缩短了预测执行时间。  相似文献   

2.
最小二乘支持向量机短期负荷预测研究   总被引:1,自引:0,他引:1       下载免费PDF全文
电力系统短期负荷预测是一项非常重要的工作,准确的短期负荷预测对于电力系统经济、安全、可靠的运行具有特别重要的意义.随着电力系统的日趋复杂化,特别是电力市场的逐步深入,短期负荷预测被赋予了更高的要求.提出了基于负荷日周期性进行前后向外推的数据预处理新方法,为短期负荷预测模型利用这些历史数据奠定了基础.最小二乘支持向量机是新一代机器学习方法,将其应用于电力系统短期负荷预测,在充分利用日周期性和同时刻负荷相近性的基础上,提出了基于最小二乘支持向量机回归算法(LSSVR)的短期负荷预测点模型.该模型通过采用不同天同时刻的负荷样本训练LSSVR来获取负荷的最优线性回归函数,实现了在最小化负荷样本点误差的同时,缩小模型泛化误差的上界,获取了较好的负荷预测性能.  相似文献   

3.
提出了一种基于偏最小二乘支持向量机的负荷预测模型。首先通过偏最小二乘(PLS)对负荷数据进行成分提取,提取的成分具有线性特点,并消除输入因素的多重相关性,然后采用支持向量机方法(SVM)对提取的成分进行预测。算例表明,该算法用于短期负荷预测建模速度快,预测精度高,是种行之有效的方法。  相似文献   

4.
为了合理解决用电高峰电量分配问题,采用短期负荷预测是一种非常有效的手段,在电力系统安全调度、经济运行中扮演着重要角色。利用最小二乘支持向量机在求解样本少、维度高等复杂问题中的优势,通过提高负荷预测的精度,使电力系统运行的可靠性得到提高。并采用某地负荷数据进行仿真,结果表明,最小二乘支持向量机在短期负荷预测中运行良好。  相似文献   

5.
基于粗糙集理论和最小二乘支持向量机的中长期负荷预测   总被引:1,自引:0,他引:1  
刘耀年  庞松岭  李鉴 《中国电力》2007,40(10):42-44
根据电力系统中长期负荷预测的特点,提出了粗糙集理论与最小二乘支持向量机相结合的预测方法。应用粗糙集理论对影响负荷的众多因素进行约简,得到与负荷关系最为密切的核心因素,将其作为最小二乘支持向量机的输入矢量进行预测。实际算例分析表明,该预测模型符合中长期负荷预测的特点并具有较高的精度,方法是可行和有效的。  相似文献   

6.
传统的负荷密度指标的求取方法通常采用经验法或简单类比法,难以满足精度要求,从负荷密度与其影响因素存在着某种非线性关系的角度出发,提出了一种基于最小二乘支持向量机(least squares support vector machine,LS-SVM)的配电网空间负荷预测方法。该方法首先引入模糊C–均值算法把各类用地性质负荷聚类为几个等级,建立比较精确的负荷密度指标体系;然后根据待预测地块的规划属性,在体系中为LS-SVM预测模型选出与预测样本特征更为相似的样本进行训练,提高LS-SVM的泛化能力和预测精度;采用遗传算法对LS-SVM预测模型的参数进行自动优化,进一步提高预测模型的适应性和预测精度,实例验证了该方法的实用性和有效性。  相似文献   

7.
电力负荷是具有一定的周期性和随机性的非平稳时间序列,传统的预测方法是建立在负荷是平稳序列的前提下,难以精确的预测。为了进行有效的预测,提高预测精度,提出将经验模式分解EMD(Empirical Mode Decomposition)和最小二乘支持向量机LS-SVM(Least Square Support Vector Machine)相结合对短期负荷进行预测。首先,运用EMD将负荷序列自适应地分解成一系列不同尺度的本征模式分量IMF(intrinsic mode function),分解后的分量突出了原负荷的局部特征,能更明显地看出原负荷序列的周期项、随机项和趋势项;然后,根据各个IMF的变化规律,采用合适的核函数和超参数构造不同的LS-SVM进行预测,最后对各分量的预测值进行相加得到最终的预测值。仿真试验表明,此方法具有较高的精度和较强的推广能力。  相似文献   

8.
为了提高风电负荷预测精度,保证风电场资源得到有效利用,提出了基于改进最小二乘支持向量机和预测误差校正相结合的方法。首先引入提升小波分解原始数据,可以有效提取其主要特征,从而克服风电场的随机性。然后采用最小二乘支持向量机对分解后的信号做预测,保证了预测精度。接着用误差校正方式修正预测结果,减少了较大误差点的出现,提高了预测结果的稳定性。最后,通过某风电场预测结果表明,基于提升小波和最小二乘支持向量机的方法可以提高预测的精度,误差预测的方法也可以有效地校正预测结果。仿真结果验证了该方法用于风电负荷预测是有效可行的。  相似文献   

9.
基于最小二乘算法的模糊支持向量机控制器及其应用   总被引:1,自引:1,他引:1  
介绍了一种基于最小二乘算法的模糊支持向量机控制器,它将模糊控制与支持向量机结合起来,融合了两者的优点,既有不依赖被控对象模型又有泛化能力强等特点。同时采用混合学习算法来优化控制器参数,即先采用最小二乘算法离线优化支持向量机(SVM)性能参数,建立SVM控制系统,再根据对象的变化,采用遗传(GA)算法在线学习优化SVM性能参数和模糊比例因子,以使控制器的性能能适应对象的变化而达到最优。火电厂主汽温控制的仿真结果表明这种控制器具有良好的控制性能。  相似文献   

10.
杨春玲  李天云  王爱凤 《吉林电力》2007,35(3):18-20,42
提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)理论的电力系统短期负荷预测新方法。在对已知负荷数据及影响因素的分析学习基础上,先用自适应参数优化法整定最小二乘支持向量机的参数,确定最优参数对,然后针对各样本重要性的差异,赋予每个样本惩罚参数不同的加权系数,建立了具有良好推广性能的AWLS-SVM回归模型。本方法突出了不同样本在训练过程中贡献不同的特性,具有结构简单,泛化性能好,不易发生过拟合现象等优点。通过对真实数据的建模预测,证明了该法在短期负荷预测中的可行性和有效性。  相似文献   

11.
在电力系统中,无论是正常运行时的调度工作还是故障修复时的孤岛划分,都需要准确的负荷数据,因此电力负荷准确的短期预测工作十分重要。本文运用最小二乘支持向量机进行预测:首先,对人工鱼群算法通过视野和步长自适应设定以及引入精英反向学习机制进行改进,使其计算更加具有优越性;其次,利用改进的人工鱼群算法对广泛应用于负荷预测的最小二乘支持向量机进行改进(主要针对其核宽度系数与正则化参数);最后,运用参数改进后的最小二乘支持向量机对IEEE 33节点系统进行短期负荷预测。实例表明了此方法的工程实用性。  相似文献   

12.
偏最小二乘(PLS)运算降低电力负荷数据之间的相关性,最小二乘支持向量机(LS-SVM)可以获得模型的全局最优预测效果,减少预测过程的运算量。介绍了PLS和LS-SVM的基本原理,给出了PLS-LS-SVM建立短期日电力负荷预测模型的过程,并用于某地区2008年的用电日负荷预测,预测的平均相对误差和最大相对误差分别为0.685%和8.8599%。与基于AR(1)模型的预测结果相比,PLS-LS-SVM模型更高的预测准确性可为短期电力负荷预测提供有效依据。  相似文献   

13.
基于偏最小二乘支持向量机的短期电力负荷预测方法研究   总被引:1,自引:0,他引:1  
偏最小二乘(PLS)运算降低电力负荷数据之间的相关性,最小二乘支持向量机(LS-SVM)可以获得模型的全局最优预测效果,减少预测过程的运算量.介绍了PLS和LS-SVM的基本原理,给出了PLS-LS-SVM建立短期日电力负荷预测模型的过程,并用于某地区2008年的用电日负荷预测,预测的平均相对误差和最大相对误差分别为0.685%和8.8599%.与基于AR(1)模型的预测结果相比,PLS-LS-SVM模型更高的预测准确性可为短期电力负荷预测提供有效依据.  相似文献   

14.
基于负荷混沌特性和最小二乘支持向量机的短期负荷预测   总被引:2,自引:0,他引:2  
以负荷时间序列的混沌特性为基础,结合混沌时间序列的相空间重构理论和支持向量机的回归理论建立了一种基于负荷混沌特性和最小二乘支持向量机的短期负荷预测模型。首先将原始负荷数据进行相空间重构,形成相点序列,然后选择与当前相点最邻近的相点作为此负荷预测模型的训练样本,经过训练寻求决策函数后就可以求出包含预测点的相点,最后还原此相点得出预测值。通过与BP神经网络的预测结果进行比较,证明了该模型在短期负荷预测中的有效性。  相似文献   

15.
风力具有很强的间歇性和波动性,导致风电负荷预测困难,主要表现在预测计算速度慢,可预测的未来时间短,预测精度不高。为了解决这些预测困难,将最小二乘支持向量机(LS-SVM)的方法运用在超短期风电负荷预测中。最小二乘支持向量机通过改进算法,简化了计算的复杂性,使计算速度明显增快,也进一步提高了预测的精度。用实际数据进行仿真,实验结果表明,基于LS-SVM的方法可以进一步提高超短期风电负荷预测的精度,加快计算和预测的速度,与其他方法相比预测精度和运算速度都有优势,用于超短期风电负荷预测是有效可行的。  相似文献   

16.
基于最小二乘支持向量机的居民用电预测研究   总被引:1,自引:1,他引:1  
随着我国经济的发展和经济结构的调整,居民用电占全社会用电量的比重逐渐增大并且有继续增加的趋势,科学合理地预测居民用电水平将为电力规划与需求侧管理提供决策基础。首先,采用相关系数法进行居民用电关键影响因素的选择。其次,将选取的影响因素作为LS-SVM的输入端,城乡居民用电量作为输出端,用Bayes准则进行SVM的参数选取,通过智能模拟学习,建立了Bayes-LS-SVM居民用电预测模型。最后,以中国某省居民用电量预测为例进行学习以及测试,并将其预测结果与广义回归神经网络预测法及几种常用的居民用电预测方法进行误差对比分析,证明了该组合方法比其它几种方法更精确有效。提出了采用人工智能的方法通过家用电器以及其他影响因素来预测居民用电,克服了以往采用家用电器预测中,家用电器功率以及年利用小时数预测不准确的问题。  相似文献   

17.
姜妍  兰森  孙艳学 《黑龙江电力》2012,35(5):349-352
针对当今人工智能短期负荷预测方法存在的缺陷,提出了一种最小二乘支持向量机(LS-SVM)短期负荷预测方法,即建立最小二乘支持向量机(LS-SVM)回归模型。在选取该模型训练样本时,为了提高预测精度,采用灰色关联投影法来选取相似日。同时,针对标准粒子群优化算法易陷入局部最优的缺点,提出自适应变异粒子群优化算法来选择最小二乘向量机的参数,从而提高了负荷预测精度,避免了对模型参数的盲目选择。仿真结果分析表明,该方法有效、可行。  相似文献   

18.
从分析风速序列的非线性和非平稳性特征出发,将一种基于聚类经验模态分解(EEMD)和最小二乘支持向量机(LSSVM)的组合预测模型引入到风速预测中。首先使用聚类经验模态分解将风速序列分解为一组相对平稳的子序列,以减轻不同趋势信息间的相互影响;然后运用最小二乘支持向量机对各子序列分别建模预测,为降低预测风险,使用自适应扰动粒子群算法(ADPSO)和模型学习效果反馈机制对LSSVM预测模型的输入维数和超参数进行联合优化;最后将各个子序列的预测结果叠加得到预测风速。实例研究表明,本文所提的组合预测模型可以有效挖掘风速序列特性,具有较高的预测精度。  相似文献   

19.
提出一种联合灰色模型(grey model,GM)和最小二乘支持向量机回归(least square support vector regression,LSSVR)算法的电力短期负荷智能组合预测方法。在考虑负荷日周期性的基础上,通过对历史负荷数据的不同取舍,构建出各种不同的历史负荷数据序列,并对每个历史数据序列分别建立能修正b 参数的GM(1,1)灰色模型进行负荷预测;采用最小二乘支持向量机回归算法对不同灰色模型的预测结果进行非线性组合,以获取最终预测值。该方法在充分利用灰色模型所需原始数据少、建模简单、运算方便等优势的基础上,结合最小二乘支持向量机所具有的泛化能力强、非线性拟合性好、小样本等特性,提高了预测精度。仿真结果验证了所提出组合方法的有效性和实用性。  相似文献   

20.
提出了一种最优FCM聚类分析和最小二乘支持向量机回归算法(LSSVR)相结合的电力系统短期负荷预测方法.在考虑电力系统负荷日周期性的基础上,运用基于改进划分系数最大原则的最优FCM聚类分析获取历史负荷样本的最优数据模式划分,并根据输入样本相似度选取LSSVR训练样本.既强化了训练样本的数据规律,又保证了数据特征的一致性,从而提高了LSSVR训练速度,改善了预测效果.仿真实验表明:LSSVR点模型的平均预测精度约98%,而本文模型的平均预测精度达到了98.7%,证明了该方法的有效性和实用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号