首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years the requirement for reduction of energy consumption has been increasing to solve the problems of global warming and the shortage of petroleum resources. A latent heat recovery type heat exchanger is one of the effective methods of improving thermal efficiency by recovering latent heat. This paper described the heat transfer and pressure loss characteristics of a latent heat recovery type heat exchanger having a wing fin (fin pitch: 4 mm, fin length: 65 mm). These were clarified by measuring the exchange heat quantity, the pressure loss of heat exchanger, and the heat transfer coefficient between outer fin surface and gas. The effects of condensate behavior in the fins on heat transfer and pressure loss characteristics were clarified. Furthermore, the equations for predicting the heat transfer coefficient and pressure loss which are necessary in the design of the heat exchanger were proposed. ©2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(4): 215–229, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20154  相似文献   

2.
In recent years the requirement for the reduction of energy consumption has been increasing to solve the problems of global warming and the shortage of petroleum resources. For example, in the power generation field, as thermal power generation occupies 60% of the power generation demand, considerable improvement of thermal efficiency is required. This paper describes the heat transfer characteristics of finned tube banks used for the heat exchanger in thermal power generation that were clarified by testing serrated finned tube banks with different fin heights for improved higher heat transfer and conventional spiral finned tube banks with different fin height. Then an equation to predict the heat transfer coefficient which is necessary for the design of the heat exchanger was proposed. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(3): 194–208, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20111  相似文献   

3.
In recent years the requirement for the reduction of energy consumption has been increasing to solve the problems of global warming and the shortage of petroleum resources. For example, in the power generation field, as thermal power generation occupied 60% of the power generation demand, considerable improvement of the thermal efficiency is required. This paper describes the pressure drop characteristics of finned tube banks used for heat exchangers in thermal power generation that were clarified by testing serrated finned tube banks with different fin heights for improved heat transfer and conventional spiral finned tube banks with different fin heights, and an equation to predict pressure drop which is necessary for the heat exchanger design is proposed. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(3): 179–193, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20112  相似文献   

4.
High-performance compact heat sinks have been developed for the effective cooling of high-density LSI packaging. Heat transfer and pressure loss characteristics of the heat sinks in both air-cross-flow and air-jet cooling have been experimentally studied. The present heat sinks were of plate-fin and pin-fin arrays with a fin pitch of 0.7 mm. The plate-fin heat sinks had higher cooling performance than the pin-fin heat sinks in the range of large airflow rates both in air-cross-flow and air-jet cooling. The thermal conductance in cross-flow cooling was 20 or 40% larger than that in jet cooling. The correlation of Colburn j-factor/Fanning friction factor versus the Reynolds number for the present heat sinks was found to be very close to that of a conventional large-size heat exchanger. © Scripta Technica, Heat Trans Asian Res, 28(8): 687-705, 1999  相似文献   

5.
In recent years the requirements for the reduction of energy consumption have been increasing to solve the problems of global warming and the shortage of petroleum resources. For example in the power generation field, as thermal power generation occupied 60% of the power generation demand, an improvement in thermal efficiency is greatly needed. This paper describes the clarification of heat transfer characteristics of finned tube banks used for a heat exchanger in thermal power generation by testing serrated finned tubes banks for a heat transfer improvement and conventional spiral finned tube banks under the same test conditions. The equations to predict the heat transfer coefficient necessary to design the heat exchanger are proposed. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(2): 120–133, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20043  相似文献   

6.
In recent years there has been a growing need for reduction of energy consumption in an effort to solve problems of global warming and the shortage of petroleum resources. For example, in the power generation field, thermal power generation now occupies 60% of the power generation demand, and the need for improved thermal efficiency is thus considerable. In this paper, the pressure drop characteristics of the finned tube banks used for the heat exchanger in thermal power generation were clarified by testing the serrated finned tube banks for improvement of higher heat transfer and the conventional spiral finned tube banks under the same test conditions, and equations for predicting the pressure drop coefficient which is necessary to design the heat exchanger were proposed. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(7): 431–444, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20030  相似文献   

7.
利用低气压环境模拟装置对开缝翅片管换热器在不同气压下的换热性能进行实验研究.研究结果表明:随着气压不断降低,换热器周围空气密度逐渐降低,换热器空气侧换热系数以及显热换热量逐渐降低,而空气含湿量随着气压降低逐渐升高,导致潜热换热量逐渐增加;当气压降至0.058 MPa以下时,换热器空气侧潜热换热量占主要部分,当气压为0.04 MPa时,换热器换热能力与常压下相比下降了36.63%.  相似文献   

8.
High-performance and very compact heat sinks have been developed for effective cooling of VLSIs with high heat-generation densities. Their heat transfer and pressure loss characteristics in air-jet cooling have been experimentally studied. The highly compact heat sinks were plate-fin arrays with a very small fin pitch of 0.4–2.0 mm. The rectangular jet nozzle width that gave the highest cooling performance was 30 to 40% of the streamwise length of the heat sinks. The influence of fin height on heat transfer became weak when the ratio of the height to the thickness of the fin exceeded approximately 35. When the air flow rate was constant, the thermal conductance increased as the fin pitch decreased. For a constant fin pitch, heat sinks with smaller fin thickness showed larger thermal conductance at a given blower power consumption. In our experimental range, the heat dissipation rate per unit heat sink volume increased as the base plate area of the heat sink became small. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(6): 399–414, 1998  相似文献   

9.
The tube bank fin is commonly used to increase the area of the heat transfer surface with a small heat transfer coefficient of a heat exchanger. If vortex generators (VGs) are punched on the fin surface, the heat transfer performance of the fin can be improved. This paper focused on the effect of transversal tube pitch on the local heat transfer performance of the three-row flat tube bank fin mounted with VGs. On the fin surface, constructing the flow channel but without mounted VGs, the transversal tube pitch was greater, and the span averaged Nusselt number downstream was larger because fewer interactions of vortices would be generated from different VGs located upstream. When the area goodness factor was used as the criteria on the condition of one tube unit of heat exchanger for commonly used fin materials and fin thickness, the transversal tube pitch has considerable effect on the heat transfer enhancement of VGs. Large transversal tube pitch is more sensitive to fin material than to fin thickness.  相似文献   

10.
This study presents numerical computation results on laminar convection heat transfer in a plate‐fin heat exchanger, with triangular fins between the plates of a plate‐fin heat exchanger. The rectangular winglet type vortex generator is mounted on these triangular fins. The performance of the vortex generator is evaluated for varying angles of attack of the winglet i.e., 20, 26, and 37° and Reynolds number 100, 150, and 200. The computations are also performed by varying the geometrical size and location of the winglet. The complete Navier–Stokes equation and the energy equation are solved by the (Marker and Cell) MAC algorithm using the staggered grid arrangement. The constant wall temperature thermal boundary conditions are considered. Air is taken as the working fluid. The heat transfer enhancement is seen by introducing the vortex generator. Numerical results show that the average Nusselt number increases with an increase in the angle of attack and Reynolds number. For the same area of the LVG, the increase in length of the LVG brings more heat transfer enhancement than increasing the height. The increase in heat transfer comes with a moderate pressure drop penalty. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20318  相似文献   

11.
The transient heat transfer in a heat‐generating fin with simultaneous surface convection and radiation is studied numerically for a step change in base temperature. The convection heat transfer coefficient is assumed to be a power law function of the local temperature difference between the fin and its surrounding fluid. The values of the power exponent n are chosen to include simulation of natural convection (laminar and turbulent) and nucleate boiling among other convective heat transfer modes. The fin is assumed to have uniform internal heat generation. The transient response of the fin depends on the convection‐conduction parameter, radiation‐conduction parameter, heat generation parameter, power exponent, and the dimensionless sink temperature. The instantaneous heat transfer characteristics such as the base heat transfer, surface heat loss, and energy stored are reported for a range of values of these parameters. When the internal heat generation exceeds a threshold the fin acts as a heat sink instead of a heat source. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21012  相似文献   

12.
An enhancement technique is developed for natural convection heat transfer from a vertical heated plate with inclined fins, attached on the vertical heated plate to isolate a hot air flow from a cold air flow. Experiments are performed in air for inclination angles of the inclined fins in the range of 30° to 90° as measured from a horizontal plane, with a height of 25 to 50 mm, and a fin pitch of 20 to 60 mm. The convective heat transfer rate for the vertical heated plate with inclined fins at an inclination angle of 60° is found to be 19% higher than that for a vertical heated plate with vertical fins. A dimensionless equation on the natural convection heat transfer of a vertical heated plate with inclined fins is presented. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(6): 334–344, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20168  相似文献   

13.
Effect of fins on heat transfer around a tube was investigated experimentally. A test tube of 30 mm diameter was installed in a test section of an open‐type wind tunnel as a single tube, or as a center tube in a single tube row and in a tube bundle of staggered layout. Fins made of paper were put on the test tube having certain fin spacing. It was clarified from the experiment that the local heat transfer coefficient around the tube degrades with decreasing fin spacing, especially on the downstream side of the tube, and the minimum fin spacing where the effect of the fin begins to appear is the largest for the single tube and the smallest for the tube bundle. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(5): 445–454, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10098  相似文献   

14.
In this study, a condensation heat transfer experiment on vertical continuous and dispersed finned surfaces using FC5312 was carried out. Experimental parameters were the pitch and height of the fin, and the dispersed fin length. In the results, the phenomena of condensate retention were observed in the bottom of each row of the dispersed fin. The condensate flow from the upper row was concentrated into the valley of the fin and then flowed down into the valley of the next fin. Moreover, it was found from the experiment that the heat transfer coefficient on the dispersed finned surface was lower than the one on the continuous finned surface as the fin pitch was smaller, but was larger than that of the continued finned surface for a larger fin pitch. Furthermore, the heat transfer enhancing effect became more significant for the higher fin with the larger fin pitch, and the heat transfer reducing effect became more significant for the lower fin with the smaller fin pitch. These special characteristics of condensation mentioned above were caused by the phenomena of condensate retention in each row of the fin and the flow pattern of the condensate between two adjacent fins on the dispersed finned surface based on experimental observations. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20221  相似文献   

15.
To analyze the performance of a heat exchanger (HEX) used in air conditioners within a realistic time frame, a simple method—based on a reduced‐mesh calculation model—was developed. The pressure loss caused by the HEX is given by a momentum source term, and the heat‐transfer performance of the HEX is approximated by using a wall function as the boundary condition. The analytical results from this simple analysis model (under a fin‐pitch range of 1.0 to 1.6 mm) were compared with experimental measurements of pressure loss and heat‐transfer performance. This comparison showed that the pressure loss from the simple analysis model agrees with the experimentally measured loss (within 3% error) and that the heating capacity determined by the simple model agrees with the experimentally measured one (within a 1% error). © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(1): 12–23, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10130  相似文献   

16.
The tube bank fin is commonly used to increase the area of the heat transfer surface with a small heat transfer coefficient of a heat exchanger. If vortex generators (VGs) are punched on the fin surface, the heat transfer performance of the fin can be improved. This paper focused on the effect of transversal tube pitch on the local heat transfer performance of the three-row flat tube bank fin mounted with VGs. On the fin surface, constructing the flow channel but without mounted VGs, the transversal tube pitch was greater, and the span averaged Nusselt number downstream was larger because fewer interactions of vortices would be generated from different VGs located upstream. When the area goodness factor was used as the criteria on the condition of one tube unit of heat exchanger for commonly used fin materials and fin thickness, the transversal tube pitch has considerable effect on the heat transfer enhancement of VGs. Large transversal tube pitch is more sensitive to fin material than to fin thickness.  相似文献   

17.
The present numerical analysis pertains to the heat transfer enhancement in a plate‐fin heat exchanger employing triangular shaped fins with a rectangular wing vortex generator on its slant surfaces. The study has been carried out for three different angles of attack of the wing, i.e., 15°, 20° and 26°. The aspect ratio of the wing is not varied with its angle of attack. The flow considered herein is laminar, incompressible, and viscous with the Reynolds number not exceeding 200. The pressure and the velocity components are obtained by solving the continuity and the Navier– Stokes equations by the Marker and Cell method. The present analysis reveals that the use of a rectangular wing vortex generator at an attack angle of 26° results in about a 35% increase in the combined spanwise average Nusselt number as compared to the plate‐triangular fin heat exchanger without any vortex generator. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20285  相似文献   

18.
The peripheral-finned tube is a new geometry aimed at avoiding moisture-condensate blockage hindering of the air-side heat transfer, by allowing for robust air flow pathways. It consists of a porous structure formed by periodic, radial-hexagonal fin arrangements of different radial extents mounted with a 30° offset from its neighboring level. Here, the air-side pressure drop and the heat transfer characteristics of five different heat exchanger prototypes with different geometric characteristics, such as the radial fin length, fin distribution, and heat exchanger length, were evaluated experimentally in an open-loop wind-tunnel calorimeter. The results demonstrate the effective performance, i.e., the pressure drop and heat transfer characteristics, of this new heat exchanger. A one-dimensional theoretical model based on the porous media treatment was also developed to predict the thermal-hydraulic behavior of the heat exchanger. The model incorporates the actual fin geometry into the calculation of the air-side porosity. The air-side permeability is calculated according to the Kozeny–Carman model and the particle-diameter based analysis. The model predicts the experimental data within a few percent RMS, depending on the correlations used for the friction coefficient and interstitial Nusselt number.  相似文献   

19.
In this study, a prediction model for condensation heat transfer on a vertical dispersed finned surface was proposed, utilizing the Adamek‐Webb model for condensation heat transfer outside a horizontal finned tube. The prediction model was based on two main experimental observation results. One is the phenomena of the condensate retention at the bottom of each row of the dispersed fin. Another is the offset phenomena of the condensate flow between each row of the dispersed fin. Given the results by the present model, it is predicted that the dependence of the condensation heat transfer coefficient for the dispersed finned surface on the fin pitch is controlled mainly by the dispersed fin length, not the total fin length. On the contrary, for a different fin pitch, the effect to the condensation heat transfer by dispersing the fin is different. From comparison with the experiment results, it is confirmed that the present model was able to predict the condensation with extremely good precision when the fin pitch was larger. Further, when the fin pitch was smaller, the predicted values were higher than the experimental values, but the tendency of the condensation heat transfer with dispersing the fin was nearly predicted. In addition, this condensing model can predict the experimental values with an error of 25% at the maximum in a range of fin pitch 0.6 mm to 1 mm. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20288  相似文献   

20.
The focus of this paper is to optimize the air-side performance of a wavy fin and tube heat exchanger at different design parameters on an individual target response using the Taguchi method. However, a statistical concept, gray relational analysis, is also studied for combined optimization, considering all target responses at a time. Based on the heat exchanger requirement, parametric study for the air-side is regarded as a more significant heat transfer and lower frictional factor. Experimental correlations were available and used for the 27 orthogonal runs. Investigation revealed the highest 47.06% fin pitch, 37.24% fin pitch, 25.46% air velocity, and 23.9% fin thickness contribution ratio for the target response of friction factor (TPF), heat transfer coefficient, and Colburn factor, respectively, with the application of the Taguchi method in a heat exchanger. GRG gives an optimum set of design parameters, A3B3C2D1E3F2G1, for wavy fin and tube of fin pitch of 6 mm, tube row number of 6, waffle height 1.8 mm, fin thickness 0.12 mm, and air velocity 5 m/s. Also, longitudinal tube pitch is 27.5 mm, and transverse tube pitch of 24.8 mm, at which TPF is maximum while the friction factor is minimal. The Colburn factor is the most significant, minor friction factor, and the heat transfer coefficient and TPF are the most considerable in GRG. Hence, an improved heat transfer performance design of a wavy fin and tube heat exchanger is achieved using the above techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号