首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
燃耗计算是反应堆组件参数计算程序的核心功能之一,其计算精度直接影响堆芯物理计算精度。本文系统研究了组件参数计算程序中燃耗计算方法,建立了燃耗计算理论模型,给出了能有效解决燃耗方程刚性的数值方法,根据此方法编制了LATC程序的燃耗计算模块并进行了数值验证。计算结果表明,该燃耗计算模块精度较高,在大燃耗步、深燃耗下仍可得到合理可信的结果。  相似文献   

2.
行波堆燃料利用情景初步分析   总被引:2,自引:1,他引:1  
本文通过对行波堆和传统快堆在燃料利用情景方面的比较分析,进一步了解了行波堆的高燃耗、深度焚烧等对核能发展的实际影响。研究发现,行波堆和传统快堆在同等规模下对贫铀的需求基本接近,深燃耗的行波堆能提高单次循环的铀资源利用率。  相似文献   

3.
采用自开发的MCNP-ORIGEN耦合程序MCORE对所设计的钠冷行波堆和驻波堆开展中子学和燃耗分析;基于MCORE获得的功率分布,采用自开发的钠冷快堆堆芯稳态热工水力分析程序SAST对钠冷行波堆和驻波堆堆芯开展热工水力分析。对比钠冷行波堆和驻波堆的堆芯物理特性和热工水力特性,结果表明:驻波堆在燃耗、最高包壳和燃料芯块温度方面具有优势,而行波堆在反应性波动和堆芯冷却剂出口温度均匀性方面具有优势。  相似文献   

4.
基于切比雪夫有理近似法(CRAM)对燃耗方程进行求解,采用EAF数据库,开发了燃耗程序ABURN。计算了聚变堆第一壁活化例题和UO2燃料燃耗例题,并将ABURN程序的计算结果与欧洲活化程序FISPACT进行对比。结果表明,ABURN程序可达到FISPACT程序同等精度,并且由于采用了CRAM,程序在燃耗步设置方面具有高度的灵活性,初步验证了ABURN程序的可用性与准确性。  相似文献   

5.
行波堆可使用低富集度核燃料达到较高的燃耗,核废料不需再回收处理,是闭式燃料循环外有效的核燃料利用体系。为进一步挖掘行波堆在核燃料利用方面的优势,本文对行波堆嬗变次锕系核素(MA)进行了可行性分析。在自主设计的1 250 MWt棋盘式径向倒料钠冷行波堆中均匀添加MA,质量份额从2.0%至12.0%。采用自主开发的MCNP-ORIGEN耦合燃耗计算程序进行分析计算。结果表明,MA嬗变量随MA质量份额的增大线性增大,而嬗变率随MA质量份额的增大呈抛物线变化。同时研究了MA质量份额对堆芯安全参数的影响,如堆芯有效增殖因数、多普勒反馈系数、空泡系数和有效缓发中子份额等。计算结果表明,堆芯有效增殖因数和空泡系数随MA质量份额的增大而增大,多普勒反馈系数和有效缓发中子份额随MA质量份额的增大而减小。  相似文献   

6.
快堆三维节块法程序(HND)由于其在计算精度和计算时间上的优越性,在中国实验快堆CEFR的初步设计和施工设计中都起了很大的作用。但是,三维节块法本身不具备燃耗计算的功能。本文的主要内容是对三维节块法添加燃耗计算的模块,并采用IAEA基准例题和中国实验快堆的对比计算进行检验。记算带有燃耗模块的HND为HNDB,结果表明,HNDB在燃耗计算中有较好的计算结果。  相似文献   

7.
为准确计算反应堆内燃耗问题,建立了基于二维离散纵标法及BATEMAN燃耗方法的输运燃耗耦合计算方法,并开发相应的计算程序。基于ENDF/B-Ⅶ评价库开发了175群中子和42群光子截面数据库MUSE-F1.0,采用OECD/NEA发布的MOX燃料快堆基准题对耦合计算方法及程序系统进行验证计算。结果表明,耦合计算程序结果与基准题吻合良好,误差在8%以内,初步验证了耦合计算程序在快堆嬗变工程应用中的可行性。  相似文献   

8.
从中子扩散方程和燃耗方程出发,详细推导了轴向行波堆一维简化计算模型,并针对公式推导中的相关假设从反应堆物理的角度进行解释,从理论上论证了轴向行波堆燃烧概念的可行性。针对轴向行波堆设计难点,即启堆区设计,从启堆区长度选取、启堆区轴向分段、启堆区轴向各段核子密度分布等方面进行了计算分析。结果表明,在合理启堆区设计基础上得到的2 000 MW轴向行波堆堆芯方案能满足全寿期内反应性波动小、重要物理特性参数保持一定形状不变在轴向传播的要求。  相似文献   

9.
《核动力工程》2013,(6):1-4
从ENDF/B-VII库提取数据,通过NJOY程序对快堆中生成的裂变产物核素进行模块加工,利用Matlab进行编程对NJOY程序计算得到的数据进行再次加工处理,得到235U核素快堆嬗变的多群伪裂变产物截面数据,然后用MCNP程序对设计的快堆进行计算得到中子能谱图,并用中子能谱对MCNP程序生成的多群截面进行并群。把生成的数据与NJOY程序生成的数据进行对比验证表明,经过处理的截面数据可以用于快堆的燃耗计算。  相似文献   

10.
汪量子  姚栋  王侃 《核动力工程》2011,32(4):127-130,142
介绍了FMCAHR程序的燃耗计算模型及流程,并使用燃耗基准题和DRAGON程序对燃耗计算结果进行验证.验证结果表明,FMCAHR燃耗计算功能的准确性较高,适用于溶液堆的燃耗计算分析.  相似文献   

11.
球床高温气冷堆的燃料管理具有燃料球多次通过堆芯的特点,使得燃料元件经历的燃耗历史十分复杂。球床高温气冷堆堆芯物理设计程序VSOP可以提供燃料元件的精细燃耗历史,但仅包含少量燃耗链和核素种类。而清华大学自主开发的燃耗计算程序NUIT可实现精细燃耗计算,且包含完整燃耗链和核素信息,但不具备精细燃耗历史跟踪功能。本文基于NUIT,结合VSOP提供的球床高温气冷堆精细燃耗历史,开发了球床高温气冷堆堆芯的精细燃耗计算功能,搭建了带有精细燃耗历史模拟和精细燃耗链核素的燃耗分析流程,并实现燃耗不确定性分析功能。在此基础上研究了裂变产额不确定性对球床高温气冷堆燃耗计算不确定性的贡献,并与VSOP的计算结果进行对比。计算分析结果显示,基于NUIT的精细燃耗计算结果和VSOP的燃耗计算结果得到了相互验证,且可以得到更多的核素浓度信息,该计算结果是开展球床高温气冷堆衰变热不确定性研究的基础。  相似文献   

12.
The CANDLE burnup strategy is a new reactor burnup concept, where the distributions of fuel nuclide densities, neutron flux, and power density move with the same constant speed along the core axis from bottom to top (or from top to bottom) of the core and without any change in their shapes. Therefore, any burnup control mechanisms are not required, and reactor characteristics do not change along burnup. The reactor is simple and safe. If this burnup scheme is applied to some neutron rich fast reactors, either natural or depleted uranium can be utilized as fresh fuel after second core and the burnup of discharged fuel is about 40%. It means about 40% of natural or depleted uranium can be utilized without either enrichment or reprocessing.

In the ideal nuclear energy utilization system, the radioactive toxicity in the environment should remain or decrease after the utilization. This requirement is very severe and difficult to be satisfied. It may take too much time for its realization. The CANDLE burnup may substitute this period. Though it is a once-through fuel cycle, the discharged fuel burnup is about ten times of the present value for light water reactors. The space necessary for final disposal can be drastically reduced. However, in order to realize such a high burnup of discharged fuels some innovative technologies should be developed. Either new material standing still for such a high burnup or intermediate recladding will be required. Especially new fuel development will take a lot of time. For the time being a small reactor with CANDLE burnup may be a good option for nuclear power generation. Even this kind of reactor requires some innovative technologies and a long period for their developments. For the first stage of CANDLE burnup the prismatic fuel high-temperature gas cooled reactor is preferable. Since the design of this reactor fits to the CANDLE burnup very well, only a little time is required for its research and development.  相似文献   


13.
球床高温堆平衡态燃耗计算程序的开发   总被引:1,自引:1,他引:0  
基于MCNP5和ORIGEN2耦合方法,开发了平衡态下球床高温堆的燃耗计算程序PBRE,用于堆的性能价值分析。为节省蒙特卡罗计算时间,对迭代收敛的方法进行优化,使之可在10个迭代步内收敛。使用PBRE对清华大学HTR-10进行建模计算,得到的平均卸料燃耗深度与文献报道值一致,表明PBRE程序适用于球床堆平衡态的燃耗分析。  相似文献   

14.
钠冷行波堆TP-1瞬态安全分析   总被引:1,自引:1,他引:0  
钠冷行波堆作为一种具有潜力的新堆型,正处于概念研究阶段。本工作根据TerraPower公司最新设计的钠冷行波堆TP-1的具体结构和运行工况方案,建立其一回路主要部件的物理数学模型,用Fortran语言初步开发了钠冷行波堆瞬态安全分析程序TAST,并对钠冷行波堆稳态进行计算,表明系统程序运行稳定可靠。采用TAST对失流事故和反应性引入事故进行计算,得到关键参数的瞬态变化,初步验证了钠冷行波堆在这两个事故工况下的安全性。  相似文献   

15.
在进行反应堆燃耗计算时,由于评价核数据库中各核素反应截面、寿命差异大,因此形成的燃耗矩阵规模大、刚性强。为降低燃耗矩阵规模、改善矩阵病态程度,有必要研究适用于多种堆芯设计研发需求的燃耗链压缩算法,并形成压缩燃耗链和数据库。首先建立了核素筛选标准,根据各个核素对中子吸收率和重要核素核子密度的贡献率对核素重要性进行排序筛选,研究了基于中子吸收率和重要核素产量贡献率的双约束燃耗链压缩算法,并完成相关程序模块的开发。通过对Kylin-2程序数据库压缩的计算分析,验证了该燃耗链压缩算法的可行性。采用压缩数据库可使其在保持原有计算精度的基础上大幅减少计算时间、提高计算效率;通过燃耗链压缩算法的研究与压缩数据库的实现,为从评价数据库出发制作压缩数据库提供了技术支撑。   相似文献   

16.
A sensitivity study on the fuel cost of an extended burnup BWR core has been carried out on the basis of a realistic model of discharge burnup extension. Full power operating length in months in a refueling cycle and the number of refueling batches are chosen as independent variables in the model to describe extended burnup cores of various types. The reference core for the sensitivity study adopts 9-month full power operation and 4-batch refueling scheme. The difference in the plant cost between the extended burnup core and the reference core, which is referred to as plant capacity factor (PCF) credit, is estimated and combined with the fuel cost to calculate the fuel cost with PCF credit.

The results show that the fuel cost with PCF credit decreases for the extended burnup core with stretched operating length as the burnup extends in cases of constant non-operating length in a cycle, and that it may increase for the extended burnup core with decreased batch number in cases of constant plant capacity factor. It is also suggested that the cost minimum combination of the independent variables can be found to a given discharge burnup for the extended burnup core with decreased batch number in an intermediate case between these two extreme cases. Extended burnup cores with fixed batch number tend to have a lower natural uranium requirement, but larger separative work requirement.

The economic break-even condition for the extended burnup core with decreased batch number is discussed based on the fraction of fixed part in the non-operating length, which is insensitive to the cycle length stretch-out.  相似文献   

17.
The CANDLE burnup strategy, where the distributions of fuel nuclide densities, neutron flux, and power density move with the same constant speed and without any change in their shapes, is applied to the block-type high temperature gas cooled reactor. If it is successful, a burnup control rod can be eliminated, and several merits are expected. This burnup may be realized by enriched uranium and burnable poison with large neutron absorption cross-section. With the fuel enrichment of 15%, gadolinium concentration of 3.0%, and fuel cell pitch of 6.6 cm, the CANDLE burnup is realized with the burning region moving speed of 29 cm/year and the axial half-width of power density distribution of 1.5 m. When the concentration of natural gadolinium is higher, the burning region moving speed becomes slower and the burnup becomes higher, though the effective neutron multiplication factor becomes smaller. When U-235 enrichment is higher, the effective neutron multiplication factor becomes larger, the speed becomes slower, and the burnup becomes higher. When the pitch is wider, the effective neutron multiplication factor becomes larger, the speed becomes faster, and the burnup becomes higher.  相似文献   

18.
Effect of the radial peaking factor limitation on the discharge burnup was examined. In general, lower limitation of the radial peaking factor places restrictions on feasible loading patterns and decreases core performance and economic efficiency. In this paper, relationship between limitation of the radial peaking factor and the discharge burnup was quantitatively investigated in 2-loop and 3-loop PWRs for several cycle lengths and fuel types. Equilibrium cores were generated assuming various radial peaking factor limitations and the change in discharge burnup, which can be considered an index of fuel cycle costs, was evaluated for each case. In order to make accurate comparisons, the generated equilibrium cores were optimized using the OPAL code by the simulated annealing method. From the calculation results, it was revealed that the limitation of the radial peaking factor has considerable impact on the discharge burnup. Relationship between the prediction accuracy of the radial peaking factor and the fuel cycle cost can be also quantitatively estimated from the above results. Therefore, the results can provide a strong motivation to improve in-core fuel management methods.  相似文献   

19.
When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of 239Pu and 241Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号