首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
为提升压水堆燃料利用率,设计了一种包含适量232Th和233U的均匀混合型燃料组件。对该型燃料组件的核特性分析表明,其具备随燃耗增加kinf下降更缓慢的特性,有利于堆芯获得更长的循环长度。以岭澳核电厂一号机组为例,对包含均匀混合型含钍燃料组件的堆芯进行了分析,结果表明,当前压水堆中采用均匀混合型含钍燃料组件是可行的,并且具备235U利用率高、堆芯循环长度长的优势。  相似文献   

2.
武器级钚(WGPu)与反应堆级钚(RGPu)可以分别从废旧拆除的核武器中以及轻水堆乏燃料中获得,二者均可以作为钍基燃料的驱动燃料。为对上述2种驱动燃料特性进行研究,利用DRAGONV4程序以及JEFF3.11-295群截面库进行反应堆物理计算。采用修正4因子公式对WGPu与RGPu驱动条件下的SB 6+3型组件初始无限增殖系数进行分析。同时,为确定WGPu与RGPu增殖性能最优的空间分离尺度和钍含量,进一步对比了不同空间分离尺度的SB型组件和MOX组件寿期末的233U质量。结果表明,钍含量相同时,WGPu具有较高的热中子裂变系数,导致其初始无限增殖系数和燃耗深度均大于RGPu,并且不随钍含量的大小而改变。RGPu作为驱动燃料的SB5+4-70%Th组件具有最优增殖性能。WGPu作为驱动燃料时,MOX型组件233U质量大于SB型组件,并在70%钍含量时达到最大值。  相似文献   

3.
研究了熔盐燃料在堆内外循环以及考虑特殊核素的添加、提取等在线处理过程的熔盐堆燃耗计算模型,在多功能组件计算程序SONG的基础上开发了相应的燃料循环计算功能并进行了初步验证。在此基础上,分别针对氧化铍慢化的热谱熔盐堆和无慢化的快谱熔盐堆进行计算,并根据堆芯反应性长期稳定的基本要求,分析了利用233U和工业Pu启动熔盐堆时配套的在线处理方案以及相应的易裂变核添加要求。通过对核素添加、提取以及燃料内核密度的平衡计算,分析了不同的在线处理方案与启动策略对钍-铀燃料循环效率的影响,并据此提出了初步的熔盐堆燃料循环技术路线。结果表明:压水堆乏燃料提取的工业Pu较233U更适宜用于钍铀燃料循环启动,因工业Pu启动的快谱熔盐堆的233U产率明显高于233U启动熔盐堆,而当有了足够的233U积累后,233U启动的热谱熔盐堆是更好的选择,因其燃料倍增时间更短且燃料初装量也小得多。  相似文献   

4.
锕系可燃毒物板状燃料组件燃耗特性研究   总被引:3,自引:2,他引:1       下载免费PDF全文
为研究锕系可燃毒物在板状燃料组件的燃耗特性和延长寿期的适用性,本研究以不同富集度的板状燃料为对象,计算分析了相同初始组件无限增殖因数(kinf)情况下的锕系可燃毒物装载量、燃耗深度、235U利用率等。结果表明,在低富集度(4%~7%)情况下,240Pu可燃毒物在寿期内表现出较好的转换效应,235U利用率高,可起到延长堆芯寿期的作用;在中等富集度(25%~40%)情况下,240Pu可燃毒物的转换效应减弱,而231Pa可燃毒物表现出较好的转换效应;在高富集度(70%~97%)情况下,231Pa可燃毒物的转换效应减弱,但含231Pa组件的235U利用率和达到的燃耗深度在所选锕系核素中最大;240Pu可作为长寿期低富集度燃料可燃毒物的选择,231Pa可作为长寿期中等、高富集度燃料可燃毒物的选择。  相似文献   

5.
轻水堆乏燃料和钍燃料的利用是解决乏燃料后处理问题和核燃料短缺的有效途径之一。本工作以ACR-700标准燃料为参考,研究了4种不同混合比例的轻水堆乏燃料及钍燃料在ACR-700中的k和燃耗。研究结果表明,将裂变产物分离后,轻水堆乏燃料的重锕系核素在ACR-700中可作为一很好的燃料;只要加入足够的启动燃料,钍燃料也可作为很好的转换燃料,使反应堆内生成233U的速率大于易裂变燃料的消耗速率,233U的生成对反应堆运行后期维持临界起重要作用。  相似文献   

6.
为研究液态熔盐热堆的燃料管理性能,需解决复杂堆芯结构的均匀化、燃料的混合及在线后处理3个问题。本文基于确定论程序DRAGON5与DONJON5,开发了液态熔盐热堆的燃料管理程序LMSR,并进行了验证。使用LMSR对液态熔盐热堆进行计算与分析,结果显示使用235U与238U启堆,加入燃料为232Th与233U条件下,后处理提取重金属的效率至少需要90%。此外,为维持堆芯有效增殖因数在1.0~1.005之间,加入的燃料中233U平均等效质量富集度在40%附近。  相似文献   

7.
229Th是一个适合于同位素稀释质谱法(IDMS)分析环境样品中钍同位素浓度的同位素稀释剂。建立了一种稳定可靠的从233U溶液中提取高纯229Th同位素稀释剂的方法,该方法采用串联阴离子交换柱分离U和Th同位素,全流程238U和232Th的回收率接近100%。采用多接收电感耦合等离子体质谱(MC-ICP-MS)反同位素稀释法准确标定了制备的229Th同位素稀释剂的浓度,为1.959×10-9(1±0.5%) g/g,230Th与229Th的同位素比值为3.322×10-3,并根据测量过程评定了稀释剂浓度的不确定度。  相似文献   

8.
在钍基ADS快热耦合次临界反应堆设计的基础上,应用研制的蒙特卡罗燃耗程序MCNTRANS对次临界堆芯在恒定功率下整个寿期内的燃耗特性进行了计算,研究分析了堆芯嬗变能力、钚焚烧性能、堆芯寿期内keff变化及加速器束流的协调匹配。分析结果表明:所设计堆芯的次锕系核素(MA)嬗变支持比可达15个百万kW级的PWR,长寿命裂变产物(LLFP)嬗变支持比为2.2个百万kW级的PWR;热区内233U的裂变贡献为25%,堆芯嬗变、增殖能力强。整个堆芯寿期内keff变化在1%左右,降低了ADS对加速器束流强度的要求。  相似文献   

9.
为满足钍基熔盐堆物理设计和钍铀燃料循环物理分析对核数据的需求,中国核数据中心研制了一套钍铀燃料循环专用数据库CENDL-TMSR-V1。本文利用SCALE程序,针对熔盐堆开展了SCALE 6.1自带数据库和CENDL-TMSR-V1库对比分析。结果显示,针对1 GWt钍增殖熔盐堆,利用两个数据库的238群数据计算的不同燃耗下keff最大差异约1 200 pcm。结合核数据对keff的灵敏度分析显示,其差异主要由石墨的核数据不同引起的。宏观检验结果显示,CENDL-TMSR-V1库中石墨数据更合理。同时,基于CENDL-TMSR-V1 44群协方差数据,计算得到核数据对初始时刻keff总不确定度为1.03%,约为SCALE 6.1自带44群协方差数据库计算结果的2倍,其差异主要由233U、232Th等核素的协方差数据不同导致。  相似文献   

10.
增殖燃烧一体化快堆插花式倒料方案研究   总被引:1,自引:1,他引:0  
增殖燃烧一体化快堆利用快堆的增殖特性,通过倒料完成从增殖组件向燃烧组件的过渡,从而实现增殖和燃烧过程的一体化。全寿期内燃烧组件提供堆芯的绝大部分功率,而在燃烧组件周围的贫铀组件则将其中的238U转化为239Pu,实现增殖功能。通过定期倒料,堆芯在一次装料后可实现长期自持临界,维持几十年的稳定运行。合理的堆芯布置与倒料方案可更好地平衡燃料的燃烧和增殖过程。插花式的堆芯布置与倒料方案是将一部分增殖组件分散布置在堆芯高通量区,保证了增殖组件的快速增殖,同时可保持堆芯在整个反应堆寿期内具有稳定的功率分布。另外,插花式堆芯布置与倒料方案最终的组件卸料燃耗是相对均衡的,所有从燃烧区倒出的组件均具有相近的燃耗,一般在250~300 GW•d/t左右。这使得增殖燃烧一体化快堆可在不进行燃料后处理的条件下,实现铀资源的高效利用。  相似文献   

11.
The performance of natural uranium and thorium-fueled fast breeder reactors (FBRs) for producing 233U fissile material, which does not exist in nature, is investigated. It is recognized that excess neutrons from FBRs with good neutron economic characteristics can be efficiently used for producing 233U. Two distinct metallic fuel pins, one with natural uranium and another with natural thorium, are loaded into a large sodium-cooled FBR. 233U and the associated-U isotopes are extracted from the thorium fuel pins. The FBR itself is self-sustained by plutonium produced in the uranium fuel pins. Under the equilibrium state, both uranium and thorium spent fuels are periodically discharged with a certain discharge rate and then separated. All discharged fission products are removed and all discharged actinides are returned to the FBRs except the discharged uranium utilized for fresh fuel of the other thorium-cycled reactors. 233U-production rate of the FBRs as a function of both the uranium–thorium fuel pins fraction in the core and the discharge fuel burnup is estimated. The result shows that larger fraction of uranium pins is better for the FBR criticality while larger fraction of thorium fuel pins and lower fuel burnup give higher 233U production rate.  相似文献   

12.
本文采用中子输运程序MCNP,基于ENDF/B-Ⅶ-1核数据库,对几种典型惰性基质燃料(IMF)的Doppler系数进行了计算,并通过理论分析给出了各核素对Doppler系数贡献的表达式。结果表明:在相同惰性基质条件下,武器级Pu燃料的Doppler系数的绝对值小于反应堆级Pu燃料的;在惰性基质中添加232Th可使Doppler系数更负,且可使IMF获得与低浓UO2燃料相近的Doppler系数;硼可燃毒物对Doppler系数的贡献为正效应,而铒可燃毒物则可进一步增强负Doppler系数,有利于反应堆的固有安全性。  相似文献   

13.
铀样品年龄与生产时间密切相关,是核法证学调查核材料来源属性的一个重要参数。本文研究建立了利用230Th/234U原子数比测定铀样品年龄的分析方法。分别用229Th和233U稀释剂进行铀样品同位素稀释,利用TEVA树脂对样品中的铀和钍进行分离处理,用多接收电感耦合等离子体质谱测量229Th/230Th和233U/234U原子数比,根据铀年龄计算公式通过230Th/234U原子数比可得到样品的铀年龄。采用该方法对CRM U850和U010标准样品进行了年龄测定,结果与美国劳伦斯·利弗莫尔国家实验室的测量结果一致,但较实际年龄偏大,可能是由于生产时纯化过程不完全,导致有残留的230Th在样品中。本文所建立的方法可用于铀样品230Th-234U模型年龄的测定,为核法证学调查提供重要信息。  相似文献   

14.
Thorium (Th) oxide fuel offers a significant advantage over traditional low-enriched uranium and mixed uranium/plutonium oxide (MOX) fuel irradiated in a Light Water Reactor. The benefits of using thorium include the following: 1) unlike depleted uranium, thorium does not produce plutonium, 2) thorium is a more stable fuel material chemically than LEU and may withstand higher burnups, 3) the materials attractiveness of plutonium in Th/Pu fuel at high burnups is lower than in MOX at currently achievable burnups, and 4) thorium is three to four times more abundant than uranium. This paper quantifies the irradiation of thorium fuel in existing Light Water Reactors in terms of: 1) the percentage of plutonium destroyed, 2) reactivity safety parameters, and 3) material attractiveness of the final uranium and plutonium products. The Monte Carlo codes MCNP/X and the linkage code Monteburns were used for the calculations in this document, which is one of the first applications of full core Monte Carlo burnup calculations. Results of reactivity safety parameters are compared to deterministic solutions that are more traditionally used for full core computations.Thorium is fertile and leads to production of the fissile isotope 233U, but it must be mixed with enriched uranium or reactor-/weapons-grade plutonium initially to provide power until enough 233U builds in. One proposed fuel type, a thorium-plutonium mixture, is advantageous because it would destroy a significant fraction of existing plutonium while avoiding the creation of new plutonium. 233U has a lower delayed neutron fraction than 235U and acts kinetically similar to 239Pu built in from 238U. However, as with MOX fuel, some design changes may be required for our current LWR fleet to burn more than one-third a core of Th/Pu fuel and satisfy reactivity safety limits. The calculations performed in this research show that thorium/plutonium fuel can destroy up to 70% of the original plutonium per pass at 47 GWd/MTU, whereas only about 30% can be destroyed using MOX. Additionally, the materials attractiveness of the final plutonium product of irradiated plutonium/thorium fuel is significantly reduced if high burnups (∼94 GWD/MTU) of the fuel can be attained.  相似文献   

15.
Yield analyses of nuclear explosions and thermal analyses of hypothetical nuclear explosive devices (HNEDs) based on reactor-grade plutonium are examined in a common approach. Three different levels of HNED technology are defined by criteria of geometric dimensions and thermodynamic characteristics of the chemical high-explosive implosion lenses. The results show the content of Pu-238 and the heat it generates in reactor-grade plutonium to be the key parameter. Low-technology HNEDs based on reactor-grade plutonium from spent low-enriched uranium (LEU) or MOX LWR fuel with burnups of 30 GWd/t or more are technically unfeasible. For medium technology, this limit rises to approximately 55 GWd/t burnup. Special cooling applied to such HNEDs would increase these burnup limits still further. Higher Pu-238 contents in reactor-grade plutonium are required to make such HNEDs technically unfeasible. Only for high-technology HNEDs, which could only be built by Nuclear Weapon States (NWSs), the limit to the Pu-238 content of reactor-grade plutonium would rise to approximately 9%.The paper discusses scientific lower limits of alpha-particle heat power or Pu-238 contents above which reactor-grade plutonium can be considered denatured or proliferation-resistant. However, eventually such limits could only be determined by IAEA in agreement with the countries concerned.Such denatured, proliferation-resistant reactor-grade plutonium, which makes reactor-grade plutonium HNEDs technically unfeasible, can be produced by various fuel cycle strategies employing enriched reprocessed uranium (ERU) or minor actinides (MAs). An interim phase of denatured proliferation-resistant plutonium production can be envisioned. A fully proliferation-resistant civil plutonium fuel cycle will become possible later. The use of MAs creates additional proliferation problems. While americium cannot be misused for weapon purposes, neptunium may well be. The neptunium actinide, therefore, must be avoided in an appropriate strategy of a future proliferation-resistant civil nuclear fuel cycle. A fuel cycle strategy of this type is proposed.  相似文献   

16.
The comparatively higher level of thorium reserves and the absence of long lived actinides of environmental concern offer real advantages for utilization of thorium in nuclear reactors. While use of uranium is likely to continue for some more time in view of investments already made, a shift to thorium eventually is an imperative necessity. It is in fact inevitable for a country like India. The paper presents a detailed comparative analysis of occupational radiation exposures as well as environmental releases. Different stages such as mining, fuel fabrication, reactor operation, spent fuel storage and reprocessing are considered. The factors that need to be taken into account include among others, the relatively lower occupational exposures and environmental releases in sodium cooled fast reactors compared to LWRs, the occurrence of thorium as surface deposits obviating the need for deep mining as in the case of uranium and the special dose reduction measures that need to be devised to minimize occupational exposures due to daughter products of 232U present in 233U during fuel fabrication operations. If once through mode of fuel cycle is to be adopted, thorium oxide materials are likely to be more enduring than would be the case with uranium.  相似文献   

17.
熊文纲  李文新  王敏 《核技术》2012,(5):395-400
在钍铀燃料循环过程中生成的232U的衰变子体具有强放射性,对燃料循环具有重要影响。本工作采用ORIGEN2、SCALE5程序,以及基于Bateman方法编写的程序,分析了在不同条件下,热堆中钍反应生成232U的规律。一般情况下,232U主要由232Th的(n,2n)反应链生成,而在中子能谱更软情况下,230Th对232U生成贡献增大;CANDU型重水堆和压水堆的含钍燃料组件的燃耗计算结果表明,铀中232U含量随燃耗深度增加而变大,同时初始230Th/Thtotal大小直接线性影响卸料燃耗时232U/Utotal或232U/233U。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号