首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of an inclination angle on the natural convection heat transfer from an inclined heated plate with rectangular grids is investigated. Heat transfer coefficients are measured in air when the plates are inclined at angles from ?30 to +60 from a vertical plane, grid heights are in the range of 5 to 10 mm, and diagonal lengths of the grid are 25, 50, 100, and 200 mm. For each configuration, the surface heat flux ranges from 50 to 200 W/m2. It is found that the rectangular grids increase local heat transfer coefficients when the grids are applied to an inclined plate. The rectangular grids increase the average heat transfer coefficients along the horizontal centerline of the plate by up to 20% compared to those coefficients of a smooth plate, even when the angles of inclination are ±30° © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(5): 408–419, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10043  相似文献   

2.
An enhancement technique was developed for natural convection heat transfer from a tall, vertical heated plate to water. Rectangular grid fins attached to the base plate were utilized as a heat transfer promoter. These grid fins redirect the high‐temperature fluid ascending along the base plate toward the outside of the boundary layer and introduce the low‐temperature ambient fluid toward the base plate instead. The heat transfer coefficients of thus‐treated surfaces were measured and compared with a nontreated surface and a surface with conventional vertical plate‐fins. The highest performance was achieved for the experimental surfaces. In particular, the experimental surfaces with 5‐mm‐high, nonconducting grids and with 10‐mm‐high, conducting grid fins show 27% and 80% higher heat transfer coefficients compared to the turbulent heat transfer coefficients of the nontreated surface, respectively. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(2): 178–190, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10083  相似文献   

3.
Using interferometric techniques the phenomemon of natural convection from an inclined isothermal plate in air was investigated. The results show that for plate inclinations up to 60 degrees from the vertical, the plate can be treated as vertical. For angles between 60 and 75 degrees a gradual change is noted. For inclination of 75° the heat transfer exhibits definite changes from vertical plate predictions. The upper and lower surfaces can be treated as similar for all angles below 60 degrees, and only at 75° or greater a distinction between them becomes apparent/ The assumption that the parallel component of acceleration due to gravity, when used for any inclination angle, gives correct heat transfer rates is not valid.  相似文献   

4.
Turbulent transition mechanisms and heat transfer characteristics of natural convection over an inclined plate heated with constant heat fluxes were investigated experimentally. The experiments covered the ranges of modified Rayleigh numbers from 103 to 8×1012 and inclination angles θ from 0 (horizontal) to 9° (vertical). The flow fields over the plate were visualized with smoke. The results showed that longitudinal vortices appear first in the laminar boundary layer when θ<72°. Then, the vortices detach from the plate and become distorted, and, finally, a fully turbulent state is accomplished far downstream of the plate. Local Nusselt numbers were also measured under the same conditions as the above visualizations. The results showed that the numbers deviate from the laminar values with the formation of the longitudinal vortices and, then, increase significantly with the detachment of the vortices. Based on these results, empirical correlations for the laminar and turbulent heat transfer by natural convection were proposed. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20304  相似文献   

5.
Heat transfer behavior with both the conductive and nonconductive fins have been analyzed by examining variations of the local and average Nusselt numbers in two‐dimensional flow. The main objective of this study is to quantify and compare the natural convection heat transfer enhancement of fin array with different fin aspect ratio and at different angles of inclination. It is found that significant heat transfer augmentation is obtained for both conductive and nonconductive fins. For conductive fins 20% higher augmentation factor is obtained when the fin aspect ratio is 6, angle of inclination is 60° and the pitch‐to‐length ratio is 0.2. For nonconductive fins, 10% higher augmentation factor is obtained when fin aspect ratio is 8, angle of inclination is 45° and pitch‐to‐length ratio at 0.5. A general correlation has been developed to predict the average Nusselt number and heat transfer augmentation factor for conductive and nonconductive fin arrays as a function of different fin configurations.  相似文献   

6.
This study details the numerical modelling and optimization of natural convection heat suppression in a solar cavity receiver with plate fins. The use of plate fins attached to the inner aperture surface is presented as a possible low cost means of suppressing natural convection heat loss in a cavity receiver. In the first part of the study a three-dimensional numerical model that captures the heat transfer and flow processes in the cavity receiver is analyzed, and the possibilities of optimization were then established. The model is laminar in the range of Rayleigh number, inclination angle, plate height and thickness considered. In the second part of the study, the geometric parameters considered were optimized using optimization programme with search algorithm. The results indicate that significant reduction on the natural convection heat loss can be achieved from cavity receivers by using plate fins, and an optimal plate fins configuration exit for minimal natural convection heat loss for a given range of Rayleigh number. Reduction of up to a maximum of 20% at 0° receiver inclination was observed. The results obtained provide a novel approach for improving design of cavity receiver for optimal performance.  相似文献   

7.
An experimental study of natural convection heat transfer in a differentially heated semicircular enclosure was carried out. The flat surface was heated and the radial surface was cooled isothermally. The effects of angle of enclosure inclination on the heat transfer across semicircular regions of several radii were measured for Rayleigh numbers RaR ranging from 6.72 × 106 to 2.33 × 108, using water as the working fluid. The angle of inclination varied from −90 degrees to 90 degrees with radii R of 50, 40, and 30 mm. The flow patterns were sketched from the results of a visualization experiment using aluminum powder. The temperature measurements in the enclosure were carried out using liquid crystals and thermocouples. The results indicate that different flow patterns were encountered as the angle of inclination varied, and the heat transfer rate was largely dependent on the flow pattern. In particular, enhanced heat transfer rates can be obtained when plume-like flow occurs along both hot and cold walls in the case of an upward-facing hot wall. Heat transfer for the inclined enclosure can be predicted using the equation for a vertical enclosure presented in this paper. © 1998 Scripta Technica, Inc. Heat Trans Jpn Res, 26(2): 131–142, 1997  相似文献   

8.
In this study condensation heat transfer on a cold inclined circular cylinder due to natural convection for various conditions is investigated experimentally. The cylinder is placed in an isolated test room to permit pure natural circulation of ambient air. Ambient temperature and humidity of the test room are controlled by a refrigeration cycle and humidifying. The ambient relative air humidity changed in the range of 30 to 50% and temperature from 25 to 35 °C. The ethylene‐glycol/water solution is used as a refrigerant to control and keep the temperature of the test section at a constant value. The cold surface temperature is varied from 2 to 6 °C. The condensation rate and heat flux are found to depend mainly on time, temperature difference between ambient air and cold surface, ambient relative humidity, and tube inclination. Results are plotted for various conditions with respect to time. The experimental results are used to propose a correlation to predict the condensate mass flow rate for free convection heat transfer. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21015  相似文献   

9.
Most investigations on forced convective boiling have been conducted by using uniformly heated round tubes under a vertical upward flow condition, although the actual system has a non‐uniformly heated condition with several tube orientations. The non‐uniformity of the heat flux and tube inclination causes the liquid film distribution, which in turn affects the critical heat flux. In this investigation, the flow and heat‐transfer characteristics were experimentally investigated under non‐uniformly heated conditions along the circumferential direction with a 45° tube inclination. In the experiment, CHF was measured by using two different heated lengths, i.e., 900 and 1800 mm. The experimental results showed a unique tendency of CHF caused by the interrelationship of the non‐uniform heat flux distribution, the tube inclination, and liquid film redistribution. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20333  相似文献   

10.
Numerical simulations were conducted for natural convection heat transfer in a narrow gap between two horizontal plates in air. The lower plate is an infinite plate with a circular heating zone. The upper one is the bottom of a vertical cylinder, which is placed right above the circular heated plate and kept at room temperature. A set of Navier–Stokes equations and an energy equation are analyzed for a variety of combinations of gap clearance and Rayleigh number. The calculated average heat transfer values are shown to be in good agreement with the experimentally obtained ones reported in a previous paper. From the obtained isotherms, streamlines, and local Nusselt numbers, it is found that two types of convection appear in the gap space according to the conditions of Rayleigh number and gap clearance: one is a simple convection due to a single renewal flow which replaces heated air with ambient air and the other is a combined convection due to several vortex flows and a renewal flow. Furthermore, the flow rate of each flow controls the rate of heat transfer from the limited area which is covered by each flow. From this fact, the validity of the previously proposed heat transfer correlation is briefly discussed. © 2001 Scripta Technica, Heat Trans Asian Res, 30(6): 485–502, 2001  相似文献   

11.
The present study deals with fluid flow and heat transfer in the transition process of natural convection over an inclined plate. In order to examine the mechanism of the transition process, experiments on the flow and heat transfer were performed for various plate inclination angles in the range of 20 to 75°. The wall temperature and fluid flow fields were visualized using a liquid crystal sheet and fluorescent paint, respectively. The visualization confirmed that separation of a boundary layer flow took place, and the onset point of streaks appeared over the plate wall when the modified Rayleigh number exceeded a characteristic value for each inclination angle. The local Nusselt number in the transition range was proportional to the one‐third power of the local modified Rayleigh number. By introducing a nondimensional parameter, a new correlation between visualizations of the flow and temperature fields and heat transfer was proposed. © 2001 Scripta Technica, Heat Trans Asian Res, 30(8): 648–659, 2001  相似文献   

12.
The almost two-dimensional steady-state rates of heat loss from arrays of uniformly-spaced vertical rectangular fins, extending upwards—in otherwise stagnant air—from horizontal heated bases, have been measured. (The vertical air gaps between the fins were closed at their sides, by insulated vertical end-barriers.) The effects of various combinations of height, thickness and spacing of the fins, for different base temperatures (in the range 40 to 100°C), have been studied.For the configuration considered, in a normal ambient environment (~ 20°C), there is an optimal fin spacing (? 16 mm) corresponding to the greatest steady-state rate of free convective/conductive heat loss through the air from the finned system, and this is almost independent of the temperature of the heat exchanger base (in the range 40–100°C). At this optimal spacing for base temperatures not greater than 50°C, the convective/conductive heat transfer rate from the array increases with the fin height up to about 60 mm, so that it would be uneconomic to employ taller fins if convection/conduction is dominant compared with radiation.If the radiation contribution is also considered, then the optimal spacing corresponding to the maximum total steady-state rate of heat loss through the air is somewhat less than the optimal spacing for which, under the same temperature conditions, the maximum steady-state rate of convective/conductive heat leak occurs. The greater the emissivity of the heat exchanger surfaces, the narrower the optimal uniform gaps between the fins.A two-dimensional finite-difference computer program has been composed to predict the temperature distribution throughout the heat exchanger for a stipulated ambient environmental temperature and experimentally-determined distribution of the heat transfer coefficient over the surfaces of the exchanger. This enables, for instance, any hot spots to be located prior to a proposed design being built.  相似文献   

13.
This paper presents an experimental investigation of the influence of a transversal flow deflector on the cooling of a heated block mounted on a flat plate.The deflector is inclined and therefore it guides the air flow to the upper surface of the block.This configuration is simulating the air-cooling of a rectangular integrated circuit or a current converter mounted on an electronic card.The electronic component is assumed dissipating low heat power,as such,air forced convection is still a sufficient cooling way even without fan or heat sink on the component.The measurements are given by hot and cold wires anemometers and by an InfraRed camera.The results give details of the effects of the deflection on the hydrodynamic and the thermal fields on and over the block for different inclination angles.They show that the deviation caused by the deflector may significantly enhance the heat transfer from the component.Deflection is also able to avoid local overheating of the electronic component.Optimum heat transfer rate and homogenised temperature are shown to be obtained with an inclination angle =30°.  相似文献   

14.
Turbulent transition mechanism and local heat transfer characteristics of the natural convective flows over upward‐facing inclined plates were investigated experimentally. The experiments were performed in the range of modified local Rayleigh numbers from 104 to 8 × 1014 and of inclination angles θ from 0 to 90°. The flow fields over the plate and the surface temperatures of the plate were visualized with dye and liquid crystal thermometry. The results showed that longitudinal vortices play a main role in the turbulent transition over the plate of θ < 72°. These vortices appear first in the laminar boundary layer, then detach from the plate and, finally become distorted. It is found that the heat transfer is enhanced markedly by the detachment and the distortion of these vortices. The local heat transfer coefficients were measured in the laminar, transitional, and turbulent regions. The results show that the coefficients in the turbulent region become identical and independent of inclination angles. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(3): 278–291, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10091  相似文献   

15.
We have studied the enhancement of heat transfer by vortex generators. Experiments were performed on rectangular‐type vortex generators mounted on a parallel‐plate heater, and the heat transfer coefficient of the heater surface and pressure drop in the duct were measured. These measurements indicated that a rectangular vortex generator (called a double‐inclined winglet), with inclination angle of the vortex generator surface to the heater surface (β) at 60°, and the attack angle to the flow direction (γ) at 45°, maximizes the local Nusselt number of the heater surface. It was also found that a group of double‐inclined winglets has an optimal arrangement in a winglet array, longitudinal pitch and transverse pitch, that maximizes the ratio [Colburn's dimensionless heat transfer coefficient JH]/[friction factor f]. The results of numerical calculations showed that the double‐inclined winglet was superior to the conventional rectangular vortex generator in heat transfer. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(3): 253–267, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10089  相似文献   

16.
Experimental investigation was performed on the mixed convection heat transfer of thermal entrance region in an inclined rectangular duct for laminar and transition flow. Air flowed upwardly and downwardly with inclination angles from ?90° to 90°. The duct was made of duralumin plate and heated with uniform heat flux axially. The experiment was designed for determining the effects of inclination angles on the heat transfer coefficients and friction factors at seven orientations (θ = ? 90°, ?60°, ?30°, 0°, 30°, 60° and 90°), six Reynolds numbers (Re  420, 840, 1290, 1720, 2190 and 2630) within the range of Grashof numbers from 6.8 × 103 to 4.1 × 104. The optimum inclination angles that yielded the maximum heat transfer coefficients decreased from 30° to ?30° with the increase of Reynolds numbers from 420 to 1720. The heat transfer coefficients first increased with inclination angles up to a maximum value and then decreased. With further increase in Reynolds numbers, the heat transfer coefficients were nearly independent of inclination angles. The friction factors decreased with the increase of inclination angles from ?90° to 90° when Reynolds numbers ranged from 420 to 1290, and independent of inclination angles with higher Reynolds numbers.  相似文献   

17.
Developing natural convection in an asymmetrically heated, open-ended vertical channel was studied both experimentally and numerically. A tightly stretched, perforated, plastic radiation shield was suspended parallel to an electrically heated aluminum plate to form a vertical channel. In order to model the heat transfer and fluid flow in the vertical channel, the unsteady, two-dimensional Navier-Stokes equations were solved using a primitive variable, finite-difference formulation. Flow through the perforated boundary was modeled using a modified form of Darcy's law. Radiative exchange between the boundaries and between the boundaries and the environment was included. The predicted mass flow was within 3% of that measured experimentally. Both the average plate temperature and the bulk exit channel air temperature were within 1·2°C of the measured values. However, the predicted average temperature of the radiation shield was 8°C higher than that measured.  相似文献   

18.
Natural convection heat transfer from a heated thin plate located in the middle of a lid-driven inclined square enclosure has been analyzed numerically. Left and right of the cavity are adiabatic, the two horizontal walls have constant temperature lower than the plate’s temperature. The study is formulated in terms of the vorticity-stream function procedure and numerical solution was performed using a fully higher-order compact (FHOC) finite difference scheme on the 9-point 2D stencil. Air was chosen as a working fluid (Pr = 0.71). Two cases are considered depending on the position of heated thin plate (Case I, horizontal position; Case II, vertical position). Governing parameters, which are effective on flow field and temperature distribution, are Rayleigh number values (Ra) ranging from 103 to 105 and inclination angles γ (0° ? γ < 360°). The fluid flow, heat transfer and heat transport characteristics were illustrated by streamlines, isotherms and Nusselt number (Nu). It is found that fluid flow and temperature fields strongly depend on Rayleigh numbers and inclination angles. Further, for the vertical located position of thin plate heat transfer becomes more enhanced with lower γ at various Rayleigh numbers.  相似文献   

19.
Natural convective flows over upward‐facing, inclined plates were investigated experimentally, with an emphasis on the role of opposing flows that appear over the plates inclined slightly from the horizontal line. The flow fields over the plates and the surface temperatures of the heated plates were visualized with both dye and a liquid‐crystal thermometry. The results showed that both the descending and ascending flows appeared over the plates when the inclination angles of the plates were less than 15°. The two flows collided with each other at a certain distance from the plate edge, and then detached from the plate to become a thermal plume. It was found that the above distance was determined solely by the inclination angles and was independent of sizes and heat fluxes of the plates. The local heat transfer coefficients of the plates were also measured. The results showed that the heat transfer from the plate was enhanced by the occurrence of the descending flows. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(5): 362–375, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10036  相似文献   

20.
Natural convection heat transfer in a circular enclosure, one half of which was heated and the other half of which was cooled, was investigated experimentally, focusing on the effect of the inclination angle. The experiments were carried out with water. Flow and temperature field were visualized by using the aluminum and liquid-crystal suspension method. The results show that with downward heating the heat transfer coefficient increased as the inclination angle of the boundary between the heating wall and the cooling wall approached the vertical. But with upward heating, the heat transfer coefficient showed minimal change, exhibiting a small peak value when the inclination angle was γ ˜ –45°. The heat transfer coefficient of a flat circular enclosure was estimated from the circular enclosure's heat transfer coefficient. These results can be explained by the obtained flow and temperature fields. © 1999 Scripta Technica, Heat Trans Asian Res, 28(2): 152–163, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号