首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
研究了反应堆安全分析仿真机的物理模型、热工水力模型、辅助系统建模方法及数值计算技术,用全隐式差分法求解核蒸汽供应系统各个节块、节点的联立方程,在Windows平台下开发了仿真支撑软件与计算软件.用本文开发的安全分析仿真机与Relap5程序对小破口事故进行了计算比较.结果表明,本模型模拟破口事故主要参数的变化规律与Relap5程序的计算结果相符,且本仿真机能够进行实时仿真计算,计算稳定性较好.  相似文献   

2.
本文利用Gasflow程序对非能动压水堆发生假想的严重事故后,安全壳内的氢气流动、分布和积聚行为进行了计算和分析,对安全壳内各房间的氢气风险进行了评价并给出了降低氢气燃烧风险的建议。计算结果表明,在发生大破口事故中,安全壳内氢气浓度较高的区域为破损蒸汽发生器隔间,内置换料水箱隔间和上部隔间,需要设置消氢系统来降低隔间内的氢气浓度。  相似文献   

3.
《核安全》2017,(4)
福岛事故后的核电厂安全审评过程中,国家核安全局对于严重事故下的氢气安全问题提出了更高的要求,从满足当前高标准的氢气安全要求的角度出发,有必要对安全壳内氢气行为开展更为细致深入的研究,开展氢气的三维分析,为集总参数程序的分析结果提供有益补充。本文采用一体化严重事故分析程序和流体力学程序对国产先进压水堆核电厂进行系统建模,选取大破口触发的严重事故序列,对严重事故工况下的氢气行为及氢气控制系统性能进行分析评价。首先采用一体化严重事故分析程序计算氢气产生源项、氢气产生速率和安全壳内氢气浓度分布等,评价安全壳隔间内的氢气风险。并采用计算流体力学程序,进一步对安全壳内重要隔间的氢气分布进行三维分析,研究安全壳内氢气和水蒸汽的行为,获得重要隔间内的流场、温度场、压力场、氢气分布及浓度变化等计算结果。CFD程序在计算气体分布方面要比集总参数程序更加精确和详细,通过更精细地模拟安全壳内的氢气行为,可以为集总参数程序的计算结果提供补充,为氢气控制系统的设计优化和严重事故氢气风险管理等提供有力的支持。  相似文献   

4.
根据AP1000非能动氮气安全注入水箱的结构和工作原理建立了热工水力模型并开发了计算分析程序TACAP。利用TACAP计算得到了AP1000非能动氮气安全注入水箱在两种小破口失水事故(包括25.4 cm等效直径冷管破口和5.08 cm等效直径冷管破口)下的瞬态特性,得到了箱内水位及注入流量等关键参数的瞬态变化。计算结果表明:安注箱在小破口失水事故后能提供高效的安全注入,对一回路快速地进行冷却和降压,有效地缓解事故后果。TACAP计算结果与西屋公司NOTRUMP程序计算结果基本一致,表明了TACAP程序的适用性和正确性。  相似文献   

5.
核电厂在严重事故期间会产生大量氢气并释放到安全壳内,威胁安全壳的完整性。应用氢气风险分析程序GASFLOW对先进压水堆核电站在大破口失水事故叠加应急堆芯冷却系统失效导致的严重事故期间的氢气行为及风险进行分析。结果表明,当气体释放源位于蒸汽发生器隔间时,氢气流动的主要路径为"蒸汽发生器隔间—穹顶空间—操作平台以下隔间";破口隔间的氢气体积浓度分布与源项氢气体积浓度及射流形态有关,非破口区域的氢气体积浓度呈层状分布,在扩散作用下,层状分布向下推移;蒸汽发生器隔间存在着火焰加速(FA)的可能性,但基本可排除燃爆转变(DDT)的可能性,穹顶区域基本可排除FA和DDT的可能性。  相似文献   

6.
基于GASFLOW程序,选取对M310核电厂稳压器隔间内氢气风险极为不利的两种事故工况,对安全壳内氢气风险进行了分析计算。模拟结果显示:在所研究的工况条件下,卸压箱隔间、波动管隔间、稳压器隔间及穹顶区域内,只有波动管双端断裂事故在早期氢气集中释放阶段,出现了稳压器隔间内FA准则数大于1的情况,其他隔间及其他工况下所有隔间内的FA准则数和DDT准则数均不会超过1。即,所研究隔间内均可以排除燃爆转变风险。破口隔间内部氢气浓度分布主要受源项氢气浓度以及混合气体夹带作用的影响,不同位置的氢气浓度变化存在显著差别。安全壳大空间的氢气浓度呈层状结构,随着时间推移,层状结构向下推移,安全壳大空间氢气浓度分布呈均匀化趋势发展。  相似文献   

7.
采取系统分析程序耦合过渡一体化严重事故(SA)分析程序的方法,对严重事故模拟机的开发进行研究。该方法首先使用系统分析程序计算事故早期响应,当满足耦合条件时,系统程序停止计算,切换至严重事故程序计算模拟事故中晚期。为实现切换时参数平滑过渡,以全范围模拟机常用程序RELAP5和严重事故程序MAAP4为例,主要分析了两程序热工水力模型重叠部分的堆芯区域的物理模型,选择传递了堆芯节点的芯块温度、包壳温度和堆芯功率。基于通用百万千瓦级压水堆小破口失水事故(SBLOCA)模型,使用该方法计算和SA程序单独计算进行对比验证。结果表明,过渡参数的选取是正确的,该系统分析程序耦合过渡SA程序的方法不仅能成功平滑地过渡参数,还保证了后续计算的准确性。   相似文献   

8.
目前的氢气风险分析中,主要采用一体化严重事故分析程序进行分析计算。日本福岛事故后,对氢气风险分析提出了更高的要求。为了实现对集总参数程序的有益补充,本文开展了GOTHIC程序氢气风险三维分析的研究。利用GOTHIC建立了局部氢气风险三维分析模型,在模型验证的基础之上,对典型严重事故序列下的氢气风险进行三维分析研究。研究表明:安全壳上部空间气流混合较好,氢气分层并不是非常明显;对于核电厂压力容器直接注射(DVI)管道破口所在的非能动堆芯冷却系统隔间B(PXS-B),由于破口以下部分区域被水淹没,破口以上区域的氢气浓度较高,但氢气风险较小。   相似文献   

9.
出口母管破口失水事故(LOCA)是高通量工程试验堆(HFETR)安全评价的重要始发事件之一,本文基于RELAP5程序,建立了HFETR的数值计算模型,模拟了HFETR的LOCA试验工况;通过手动全开HFETR除气系统DN50阀模拟出口母管失水试验,获得了反应堆进出口压力、容补器压力和破口流量的变化,并通过试验数据验证了RELAP5程序的计算结果合理性,结果表明:RELAP5计算结果和实验结果吻合较好,最大相对误差为7.4%,说明利用RELAP5程序模拟低温中压压水型研究堆的系统瞬变可行。  相似文献   

10.
界面切应力对垂直圆管内回流冷凝传热的影响   总被引:2,自引:0,他引:2  
本文在分析压水堆小破口失水事故中蒸汽发生器回流冷凝传热机理的基础上,针对界面切应力的影响,修正了Nusselt冷凝传热模型,并成功地编制了计算程序,获得了多种工况的传热计算结果。本文为反应堆小破口事故中回流冷凝的模拟提供了理论依据。  相似文献   

11.
基于华龙一号非能动安全壳热量导出系统(PCS)综合性能实验装置实验结果,对采用基于漂移流模型开发的华龙一号PCS程序(PCS?NCCP)进行验证,对比分析了设计工况及非设计工况下PCS?NCCP程序计算值与实验值之间的误差。结果显示,所开发的PCS?NCCP程序能模拟PCS的排热能力、稳态运行特性和动态响应特性,程序计算值能很好地跟踪实验的趋势和幅值变化,绝大部分计算误差落在±20%范围内,验证了PCS?NCCP程序的准确性。  相似文献   

12.
The containment pressure rises rapidly after LOCA, especially for the small reactors containment with very small free capacity, in order to avoid the rapid rise of containment pressure in the short term after LOCA, a pressure suppression system should be arranged in the containment. In this paper, the GOTHIC program was used to model the containment with pressure suppression system, and sensitivity analysis was carried out on the thermal response of containment after LOCA under different configuration schemes of pressure suppression system, the demonstration method of containment capacity with pressure suppression pool system and the optimal scheme were obtained. The analysis results show that the pressure suppression pool can significantly reduce the pressure in the containment, the pressure in the containment varies greatly under different configurations of pressure suppression pool modules, and the optimal configuration should be carried out for the containment design scheme in the design process.  相似文献   

13.
LOCA后安全壳内压力迅速升高,特别是自由体积较小的小型堆安全壳,为避免安全壳压力在LOCA后短期内快速升高,需在安全壳内配置抑压系统。本文通过采用GOTHIC程序对有抑压系统的安全壳进行建模并对不同抑压系统配置方案下LOCA后的安全壳热工响应进行敏感性分析,得到了有抑压水池系统的安全壳容量论证方法及抑压系统最优配置方案。分析表明:抑压水池能显著降低安全壳内的压力,不同抑压水池模块配置下安全壳内的压力差异较大,在设计过程中需针对安全壳设计方案进行优化配置。  相似文献   

14.
The NET cooling systems for in-vessel components and vessel are generally based on low pressure and low temperature water. However, the cooling loops for the breeder blanket are intended to operate at a water temperature of about 250°C. A pipe break in a loop with such data would pressurize the compartment where the break takes place. Therefore, as a basis for proper compartment design, it is important to analyze possible pressure increases following pipe breaks. It may also be necessary to introduce equipment for pressure relief or pressure suppression. The objective of the parameter study presented is to determine the relationship between allowed maximum containment pressure following postulated large pipe break in breeding blanket loop and required containment volume. Parameters varied are: blanket loop temperature and pressure (within the range of burn and baking), and pressure suppression system inclusion/exclusion. The analysis has been performed by means of the Swedish containment code COPTA. The results of the analysis are summarized in a plot showing the influence of the varied parameters on required containment volume. In addition, the results presented include required vent areas, heat sink capacities, etc.  相似文献   

15.
本文基于三维CFD安全壳程序GASFLOW开发了热构件壁面上的液膜覆盖与蒸发模型。通过选定AP1000大破口事故序列,采用耦合了液膜模型的GASFLOW程序分析了AP1000核电厂安全壳内温度压力响应及其非能动安全壳冷却系统(PCS)的性能,并与相同事故序列下WGOTHIC、MELCOR、CONTAIN等程序的计算结果进行比较。结果表明,耦合了液膜模型的GASFLOW程序可用于分析PCS的热工水力行为,其基本功能满足计算需要。  相似文献   

16.
17.
失水事故(LOCA)是压水堆核电厂的一种典型设计基准事故,该事故后的安全壳热工响应过程,尤其是安全壳压力峰值直接影响安全壳结构的完整性。本文采用确定论现实方法(DRM)对华龙一号核电厂LOCA质能释放与安全壳热工响应进行分析研究。对关键参数进行敏感性分析及统计计算,并建立DRM惩罚模型。计算结果表明,DRM惩罚模型的计算结果始终高于95%置信水平下、95%概率下的统计计算值,DRM惩罚模型是保守的。DRM方法对于华龙一号核电厂的LOCA质能释放与安全壳热工响应分析是适用的。  相似文献   

18.
For the design of an LWR containment one of the important conditions to be considered is the rapid rise of internal pressure and temperature caused by a loss-of-coolant accident (LOCA) of the primary cooling system. The phenomena occurring within a containment during a LOCA are currently investigated through experiments with a model containment. The experimental results are compared with the results of model calculations to improve the calculational methods.An experimental facility was built, consisting of a primary coolant circuit and a special model containment. The model containment, built in conventional reinforced concrete, has a diameter of 12 m, a height of 12.5 m, a capacity of 580 m3 and is designed for an internal pressure of 6 bar. The interior is divided by concrete walls and removable partitions into several compartments, which are interconnected through openings with adjustable cross sections. By exchanging the removable partitions it is possible to modify the interior of the containment and to simulate different containment shapes. For the first experiments a PWR configuration with nine compartments has been installed. The model scales of the compartment volumes and the overflow areas are about 1:64 compared to the 1200 MW PWR plant Biblis A.Up to now the test facility has been used for four trial runs and nine PWR LOCA experiments with single- and double-ended pipe ruptures of 100 mm dia. in a steam generator compartment and in the nozzle compartment. The initial conditions of the pressurized water in the coolant circuit before rupture were 140 bar and 290°C. About 0.1 sec after the rupture the flow rate at the site of rupture reaches its maximum of about 400 kg/sec (single-ended rupture) and 800 kg/sec (double-ended rupture). From the compartment where the rupture takes place a water-steam-air mixture streams through openings into the other compartments of the containment. Differential pressures between the compartments were measured with maximums of up to a few bar 0.15–0.5 sec after rupture, depending on the positions of rooms and transducers.Approximately 30–40 sec after rupture the blowdown has finished and the pressure in the containment has reached about 4–5 bar. The maximum pressure in a model containment is lower and the decrease of the pressure by condensation is faster than in a full-scale containment, due to the greater ratio of inner surface area to volume of a model containment. During blowdown the temperature of the containment atmosphere rises to about 150°C. Several minutes later the temperature of the concrete walls has increased non-uniformly causing considerable stress in the walls. Approximately 30 min after rupture measurements on the outside of the outer containment wall show a temperature-caused strain of about 30–60% of the maximum pressure-caused strain. A comparison between experiments and calculations shows discrepancies indicating the need for further development of calculational methods.  相似文献   

19.
非能动安全壳冷却系统是先进大型压水堆AP1000核电厂的重要安全系统之一,该系统利用安全壳内及安全壳外空气流道中的自然循环过程将安全壳内的热量带至环境中,大空间内的循环与热分层现象对安全壳内的传热及流动特性具有重要影响。本文基于热分层理论,针对钢制安全壳内、外的自然循环过程,建立一维计算模型,在提高计算效率的基础上,得到安全壳内的温度分布,并与三维模型的计算结果进行了对比,验证了模型的合理性;同时得到了安全壳内压力及组分的分布。  相似文献   

20.
As a passive containment cooling system (PCCS), which is adopted in simplified BWRs, several concepts, differing in cooling location and method, such as the suppression chamber water wall, the drywell water wall, the isolation condenser (I/C) and the drywell cooler, have been considered. This paper summarizes the characteristics of each PCCS concept, and the analysis results of the performance for several PCCSs during a main steam line break LOCA for a reference simplified BWR plant, obtained by the newly developed containment thermalhydraulic response analysis code TOSPAC.

The performance comparison suggests that I/C and drywell cooler have good heat removal capability with regard to the smallest heat transfer area among PCCS concepts evaluated in the present analysis. I/C removes decay heat efficiently, since it absorbs steam directly from the reactor pressure vessel, which is the hottest portion inside the containment. The suppression chamber water wall is ineffective, mainly due to high non-condensable gas partial pressure in the suppression chamber, and low suppression pool temperature.

Calculations of other pipe breaks were also implemented for the reference plant adopting I/C as PCCS. The results show the effectiveness of the I/C cooling over a wide range of break spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号