共查询到20条相似文献,搜索用时 58 毫秒
1.
风力发电机主轴承的故障诊断是提高其可靠性和可用性的关键。为及时发现风机主轴承故障,提出一种基于XGBoost-KDE的风机主轴承温度预测与故障预警方法。选用数据采集与监视控制(SCADA)系统中相关的特征参数作为输入变量,对风机正常工况下的主轴承温度进行预测,得到预测值和正常工作时运行数据的残差;之后运用非参数核密度估计(KDE)法确定残差预警阈值,结合滑动窗口分析法实现风机主轴承故障预警。以某2 MW等级风电机组为研究对象,采用SCADA系统中的运行数据做验证,实验结果表明,该方法可以对风机正常工况下的主轴承温度实现97.6%的精准预测,并对主轴承故障时产生的温度曲线波动做出反应,提前近1个月对风机主轴承故障进行有效预警。 相似文献
2.
将大数据分析应用到风机轴承故障预警中,使用栈式自动编码器(SAE)为基本结构,通过逐层提取风机轴承监视控制与数据采集系统(SCADA)数据深层特征,将散乱的SCADA大数据转化成能够深度刻画风机轴承运行状态的内在特征。利用预训练、微调的方法并结合误差反向传播算法(BP)构建SAE故障预警模型,通过SAE模型对大数据处理得到反映风机轴承运行状态的重构误差平均值,以均值漂移聚类算法动态地计算出风机轴承稳定运行状态重构误差基准值为预警的标准。最后利用某风电场机组的SCADA数据进行工程实例仿真分析,验证了基于大数据分析用于风机轴承故障预警的可行性。 相似文献
3.
4.
论述了高温气冷堆核电站用主氦风机对选用轴承的特殊要求,介绍了磁悬浮轴承的工作原理及组成,并对机械轴承和磁悬浮轴承两种轴承结构支撑进行了对比分析,认为主氦风机选用磁悬浮轴承做支撑具有方向性的重大突破. 相似文献
5.
光伏发电在能源结构中的重要性不断凸显,而提高光伏发电量预测的准确性成为当前研究的关键问题。针对中长期光伏发电量预测问题,提出一个综合利用气候预测数据的中长期光伏发电量预测方法。首先,在基于气候预测数据的发电量预测框架中,根据气候预测数据特点和预测周期划分多重子模型以充分利用气候预测数据信息。其次,在进行数据预处理后,通过对气候特征衍生与交叉、特征筛选和选择,充分挖掘气候特征的高价值信息。然后,采取一种两重多阶段超参数寻优策略,对极端梯度增强(extreme gradient boosting, XGBoost)超参数进行调整以优化预测模型。最后,在真实光伏发电量数据上,以MAPE为标准评估预测水平,验证所提中长期光伏发电量预测方法的有效性。相关实验结果表明该方法可以有效提高光伏发电量预测精度。 相似文献
6.
针对SCADA系统采集的数据繁杂,难以从原始数据判别工作中风机叶片开裂状态的问题,提出了一种对风机叶片状态进行分类预测的随机森林(RF)算法与LightGBM算法结合的模型。首先对SCADA数据进行预处理,特征变换,采用RF算法对特征进行重要性排序;然后利用清洗后的数据训练该分类预测模型,利用K折交叉验证法对模型进行验证调优;最后用测试数据集对叶片状态进行预测,依靠F1-score指标对模型性能进行评价。实验结果表明,数据处理后,模型性能明显提高,较XGBoost与GBDT算法分别提高了11%、16%,与传统的叶片状态识别方法相比,该算法能够更加快速精准的在线预测出风机叶片开裂状态,为风电场对风机叶片状态监测检修提供更可靠的参考依据。 相似文献
7.
8.
针对目前电网在负荷预测中所采集到的数据普遍存在着特征维度较少;特征关系不明;有效数据量较少的特点,为了提高电网短期负荷预测精度,本文提出一种基于XGBoost算法的新型负荷预测模型。基于XGBoost算法的负荷预测模型采用CART树作为基学习器,输入预处理后的历史负荷和特征数据,通过构建多个弱学习器逐层训练模型并得到模型,最后向模型输入测试集特征得到最终的预测结果。本文所搭建的负荷预测模型具有避免对数据特征的标准化、处理字段缺失的数据、不用关心特征间是否相互依赖、学习效果好的优点。根据真实电网数据实验结果,基于XGBoost算法的负荷预测平均绝对误差百分比下降到3.46%,比本文所对比的基于BP、GRNN、DBN神经网络的负荷模型预测值精度更高,表明本文所提模型的优越性。 相似文献
9.
《高电压技术》2021,47(8):2885-2895
历史数据在电力负荷预测中必不可少,但选用的历史数据往往存在数据量虽大而数据特征维度少、无效数据多、数据间的特征关系不明确等问题,显著影响电力负荷预测的精度。为提高超短期电力负荷预测精度,提出一种基于双层XGBoost(eXtreme gradient boosting)算法的超短期电力负荷预测方法。该方法的第1层,即数据处理层,基于XGBoost算法及特征工程,构建多个弱学习器逐层训练,筛选出对电力负荷具有显著影响的特征集;第2层即负荷预测层,以第1层筛选出的特征集和负荷为输入,优化选择XGBoost算法的超参数并对模型进行训练以得到精度最高、均方根误差最小的负荷预测模型。所搭建的负荷预测模型能够避免对数据特征进行标准化处理,且可减小数据字段缺失的影响,不用考虑特征间是否相互依赖,且模型学习效果好。算例分析中,对比基于单层XGBoost、BP神经网络、ARIMA的负荷预测模型,所提方法预测值精度更高,且在不同时间段数据集下,具有良好的泛化能力。 相似文献
10.
11.
基于电机定子电流信号分析方法的异步电动机轴承故障检测中,计及实际电动机供电电压谐波和三相电压不平衡等外部因素的情况下,如何实现轴承故障的可靠检测一直是电动机故障检测领域的难题.对传统的定子电流频谱分析方法进行了深入研究,讨论了传统最小均方算法(LMS)自适应滤渡方法在信号处理中的不足.在此基础上,提出了将小渡分析、连续细化傅里叶变换和改进LMS自适应滤波方法有机结合的异步电动机轴承故障检测新方法.该方法能够正确判断轴承故障特征频率分量,从而提高异步电动机轴承故障诊断效果,实现轴承故障的可靠检测.实验结果表明了该方法的有效性. 相似文献
12.
分析了感应电机轴承发生故障时振动信号的特性以及MUSIC算法及其高分辨率谱估计的特点,提出了一种基于MUSIC算法的感应电动机轴承故障检测方法。结果表明,在短数据情况下,相对FFT分析技术,该方法频率分辨率更高,故障检测更为准确,且计算量小,有利于电机故障实时状态监测。实验证实,将该方法应用于感应电机轴承故障检测,可准确检测出轴承故障时在包络信号中的故障特征成分,方法切实可行。 相似文献
13.
为实现风电机组滚动轴承微弱故障诊断,提出了基于改进的时时(ITT)变换的风电机组滚动轴承故障诊断方法。由时时(TT)变换可得到一维轴承故障振动信号的TT变换矩阵,实现滚动轴承振动信号的二维TT表示。提取该TT变换矩阵的对角线元素可滤除低频干扰信号,起到增强故障特征的效果。鉴于噪声对TT变换分析效果具有重要影响,提出基于能量熵准则的奇异值分解降噪方法改进TT变换,以提高TT变换的抗噪能力,实现强背景噪声条件下轴承微弱故障特征提取。仿真、实验及工程应用实例结果均表明所提方法可以有效诊断出风电机组滚动轴承的故障类型。 相似文献
14.
风电机组主轴承作为传动系统的重要组成部件,其异常辨识精度受风速波动的影响较大。针对该问题,提出了一种基于BPNN-NCT的风电机组主轴承异常辨识方法。首先,利用相关系数法确定了与主轴承状态相关的参数作为模型的输入,并基于反向传播神经网络(BPNN)建立了以主轴承温度为状态参数的状态参数预测模型。然后,基于非中心t(NCT)分布刻画了不同风速波动区间下状态参数预测残差的分布特性,并在此基础上提出了计及风速波动影响的风电机组主轴承异常状态量化指标。最后,以某风电场的2 MW直驱风力发电机组为例,验证了所提方法的有效性和准确性。 相似文献
15.
为了减少风机齿轮箱严重故障的发生,提出了一种基于随机子空间识别方法的齿轮箱故障预测算法。该算法首先建立齿轮箱的随机状态空间模型,并利用正常运行时的振动监测数据计算模型的参数矩阵的特征值,并将其作为参考特征值;然后将由实际振动数据所求得的特征值与参考特征值进行比较,如果两者误差很小,则说明齿轮箱正常,反之则异常。为了减少计算量,引入均方根误差(RMSE)作为齿轮箱故障判别指标,并利用统计过程控制(SPC)原理定义该指标的阈值。最后,对一台实际风机的振动监测数据进行仿真,结果表明了所提出算法的有效性。 相似文献
16.
配电网高阻接地故障具有电气量微弱、与正常运行工况相似等特点,因此难以检测。针对传统指标阈值法常由经验整定,在复杂环境下适应性较差、灵敏性不足等问题,提出一种基于极端梯度提升(extreme gradient boosting, XGBoost)的配电网高阻接地故障检测方法,以避免复杂的阈值整定。首先,通过建立10 kV中压配电系统高阻接地故障的等效模型,获取高阻接地故障和正常运行工况的零序电流数据。然后,在对数据进行归一化处理的基础上,利用XGBoost直接从原始量测信息中学习其与高阻接地故障的映射关系,构建高阻接地故障检测模型,以降低因特征提取产生的误差。最后,大量仿真结果表明,所提方法对高阻接地故障检测具有较好的灵敏性和速动性,并且在噪声和数据缺失等情况下表现出较强的泛化能力。 相似文献
17.
针对强噪声、跨工况场景下数据分布差异导致传统卷积神经网络(CNN) 模型泛化性能低、诊断能力不足的问题,提出 一种基于并行卷积核和通道注意力机制的滚动轴承故障诊断方法。构造了带有不同尺度卷积核的并行网络结构,可以在抑 制噪声干扰的同时有效提取出数据中的故障特征信息;融合通道注意力机制对卷积层特征提取能力进行增强,提升模型抗噪 性能以及跨工况负载下的自适应诊断能力。利用凯斯西储大学轴承数据集训练并测试诊断效果,将该方法与其他方法进行 了性能对比。结果表明,在跨工况不同负载情况下,所提方法的诊断平均准确率为97.3%,在不同信噪比噪声干扰情况下的 诊断精度平均达93.8%,均高于其他比较方法,所提出的方法在复杂多变工况下具有良好的抗噪性能和泛化能力。 相似文献
18.
袋式除尘器在产品生命周期不同阶段,包括设计、仿真、制造、测试实验以及运维等阶段都会产生大量数据,挖掘产品大数据与其运行特性之间复杂、非线性、耦合的内在关联,为解决袋式除尘器行业设计创新、运维优化等关键共性技术提供新思路。针对袋式除尘器大数据特点,提出了一种用于袋式除尘器滤袋破损在线监测的大数据挖掘XGBoost模型,研究了基于蚁群算法的XGBoost模型参数优化方法。研究结果表明,与随机森林、BP网络挖掘模型相比,XGBoost优化模型方法准确度高,识别速度快,可解释性强。 相似文献
19.
风电机组轴承处于早期故障阶段时,特征信号往往比较微弱,并且受环境噪声及信号衰减的影响严重,因此轴承早期故障特征一直难以提取。经验模态分解(EMD)在轴承的故障特征提取中已经得到了广泛的应用,但其在强背景噪声干扰下对轴承早期故障特征的提取具有一定的局限性。针对这一问题,考虑到最大相关峭度解卷积(MCKD)算法可凸显出轴承振动信号中被噪声所掩盖的故障冲击脉冲,非常适用于轴承早期故障信号的降噪处理,因此将MCKD与EMD相结合用于轴承早期故障诊断。用MCKD对强噪声轴承信号进行降噪,然后对降噪后的信号进行EMD,选取敏感本征模态函数(IMF)并计算其包络谱,通过分析包络谱中幅值凸出的频率成分判断故障类型。仿真和试验分析结果验证了所提方法的有效性和准确性。 相似文献
20.
滚动轴承故障冲击特征易被工频载波信号淹没,而传统的信号降噪方法对工频干扰不具有针对性,所以将工频陷波理论引入到轴承故障诊断中。由于陷波的窄带滤波特性,其对中心频率及带宽参数变化较为敏感,通过粒子群多参数寻优,以时域峭度最大原则对陷波器中心频率及带宽进行自适应选取,以时域波形匹配方差作为评价指标验证陷波对故障冲击特性的还原能力。试验分析表明自适应陷波可以有效地从工频调制信号中解调出故障冲击特征,对陷波后信号进行包络谱分析,其故障特征谱线得到增强,辅助以集合经验模态分解(EEMD)、变分模态分解(VMD)去噪方法,可以得到更理想的效果。 相似文献