首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
Abstract

The hydrogen permeation behaviour of X56 steel under loading in a simulated atmospheric environment was investigated. The results show that the hydrogen permeation current increases as the elastic deformation of the steel increases. In addition, the hydrogen permeation current decreases with an increase in plastic deformation. Cracking of the passive film and the reduced specimen thickness after deformation are proposed as reasons for the decrease in permeation. Thus, during plastic deformation, there is a competition between dislocation trapping and dislocation transport of hydrogen, which affects the overall hydrogen permeation current.  相似文献   

2.
Abstract

The precipitates and hydrogen permeation behaviour were investigated in high strength low alloy steel produced by thermomechanical controlled processing with air/water cooling after finishing rolling, and the water cooled specimens were further tempered at various temperatures. Two types of precipitates have been found in the specimens. One is TiN with the size ranging from 50 to 300 nm, and the other one is fine NbC. The cooling and tempering treatment conditions affect the precipitation behaviour of NbC particles in α-Fe, leading to the difference in hydrogen permeation. The apparent hydrogen diffusivity in the air cooled specimen is lower than that in the specimen quenched and subsequently tempered at 300°C when the charging current density is 10 mA cm?2. Increasing the tempering temperature to 500°C leads to the decrease of apparent hydrogen diffusivity; but the value is still higher than that in the air cooled specimen. However, the apparent hydrogen diffusivity slightly increases with further increasing tempering temperature from 500 to 650°C.  相似文献   

3.
Rong Wang 《Corrosion Science》2009,51(12):2803-2810
Effects of hydrogen on the fracture toughness of a X70 pipeline steel were investigated in the cases of hydrogen pre-charging and dynamic hydrogen charging in 0.5 mol/L H2SO4 solution under slow strain rate tensile testing. Under the hydrogen pre-charging, the fracture toughness decreased in a linear relationship with the hydrogen concentration as the hydrogen concentration was more than 1 ppm in weight. The fracture surfaces were characteristic of dimples. Under the dynamic hydrogen charging, the fracture toughness for hydrogen-induced cracking decreased linearly with logarithm of the hydrogen concentration without stress. The hydrogen-induced fracture had the appearance of cleavage facets.  相似文献   

4.
Abstract

API X80 pipeline steel is widely used in natural gas and oil transportation. In this study, X80 pipeline steels with 18.4?mm thickness and 1219?mm diameter, made in China, were welded by a combined girth welding technology. Experimental results showed that microstructures in weld metal and coarse grain heat affected zone are mainly composed of coarsening bainite grains with dimensions of 20–50?μm, and Vickers hardness in weld seam is lowered by the seven-pass welding process. Simulated results illustrated that repeatedly thermal cycles imposed by the combined multipass girth welding process easily result in softened weld joints. The predicted microstructures, phase compositions and hardness in weld metal are in agreement with the measured ones. The results could be applied to optimise this combined girth welding process and improve the weld quality of API X80 pipeline steel and even higher grade pipeline steels.  相似文献   

5.
In this study, the surface and cross section of an as-received API X70 pipeline steel was studied by SEM and EDS techniques in order to categorize the shape and morphology of inclusions. Then, an electrochemical hydrogen charging using a mixed solution of 0.2 M sulfuric acid and 3 g/l ammonium thiocyanate has been utilized to create hydrogen cracks in X70 steel. After hydrogen charging experiments, the cross section of this steel has been accurately checked by SEM in order to find out hydrogen cracks. The region of hydrogen cracks was investigated by SEM and EBSD techniques to predict the role of different microstructural parameters involving hydrogen induced cracking (HIC) phenomenon. The results showed that inclusions were randomly distributed in the cross section of tested specimens. Moreover, different types of inclusions in as-received X70 steel were found. However, only inclusions which were hard, brittle and incoherent with the metal matrix, such as manganese sulfide and carbonitride precipitates, were recognized to be harmful to HIC phenomenon. Moreover, HIC cracks propagate dominantly in transgraular manner through differently oriented grains with no clear preferential trend. Moreover, a different type of HIC crack with about 15-20 degrees of deviation from the rolling direction was found and studied by EBSD technique and role of micro-texture parameters on HIC was discussed.  相似文献   

6.
Study of the electrochemical permeation of hydrogen in iron   总被引:1,自引:0,他引:1  
Hydrogen permeation through iron membranes of different thicknesses was studied by the electrochemical permeation technique. The membranes were charged with hydrogen by galvanostatic cathodic polarization in 0.1 M NaOH at 25 °C.The measured build-up and decay permeation current transient had been examined.The experimental results revealed that the diffusion apparently increases with decreasing membrane thickness. This result suggests that the hydrogen transport through membrane was mainly governed by hydrogen trapping at the trap sites present at the grain boundaries.The influence of the passive layer on the hydrogen permeation and its influence on the evaluation of diffusion and trapping characteristics were discussed.  相似文献   

7.
The corrosion failure behavior of marine steel is affected by stress, which exists in offshore structures at sea‐mud region. The sulfate reducing bacteria (SRB) in the sea‐mud made the steel more sensitive to stress corrosion cracking (SCC) and weaken the corrosion fatigue endurance. In this paper, a kind of natural sea‐mud containing SRB was collected. Both SCC tests by slow strain rate technique and corrosion fatigue tests were performed on a kind of selected steel in sea‐mud with and without SRB at corrosion and cathodic potentials. After this, the electrochemical response of static and cyclic stress of the specimen with and without cracks in sea‐mud was analyzed in order to explain the failure mechanism. Hydrogen permeation tests were also performed in the sea‐mud at corrosion and cathodic potentials. It is concluded that the effect of SRB on environment sensitive fracture maybe explained as the consequences of the acceleration of SRB on corrosion rate and hydrogen entry into the metal.  相似文献   

8.
The Devanathan-Stachurski (DS) cell has been successfully used to determine hydrogen permeation behavior in a wide variety of metals, but the DS cell has been much less successful with aluminum alloys. The DS literature is critically reviewed for aluminum alloys. An improved DS method is described and demonstrated for use with aluminum alloys (and probably Mg-based alloys). Experimental results are reported for the hydrogen diffusion coefficient, solubility, and trapping in the AA5083 aluminum alloy. The diffusion coefficient is reported for AA6061.  相似文献   

9.
针对API X80管线钢在生产实际中遇到的落锤性能较低的问题进行了分析。结果表明,该管线钢在落锤撕裂试样断口处存在大量的异常球形析出物,这些析出物为Mo、Ti、Ni等合金元素的碳化物,尺寸约为几个微米,不但削弱了这些合金元素在钢中的弥散强化作用,而且降低了管线钢的落锤撕裂性能。结合热处理实验,探讨了这些异常长大碳化物的生成机理,即钢板的冷却速度影响碳的扩散,并最终对碳化物的形成产生决定性的作用。减少析出物较好的办法是终轧后空冷至碳化物形成温区的上限附近,然后再强制水冷,保证钢板快速通过碳化物形成区间,从而抑制碳化物的异常长大行为。  相似文献   

10.
11.
The effect of dynamic tensile straining on hydrogen permeation through low alloy Cr-Mo steel samples was studied with the electrochemical permeation technique. The hydrogen steady-state permeation current through large flat tensile specimens mounted between the two compartments of an electrochemical permeation cell undergoes different types of changes, depending on the charging conditions, on the steel’s composition and microstructure and on the strain rate. Dynamic trapping of hydrogen to strain-induced dislocations which leads to a deviation of the permeation current below the initial steady-state value is mostly observed when the external hydrogen activity and the strain rate are large. However, the hydrogen permeation current through Cr-Mo steels with a bainitic microstructure appears to be less sensitive to tensile straining up to large deformation levels than a lower alloyed Cr-Mo steel with a ferrito-pearlitic microstructure. On the other hand, the enhancement of the steady-state hydrogen permeation current observed during tensile straining if specific experimental conditions are met strongly suggests a mechanism of hydrogen transport by mobile dislocations which contributes to hydrogen permeation.  相似文献   

12.
电化学充氢条件下X70管线钢及其焊缝的氢致开裂行为   总被引:5,自引:0,他引:5  
采用电化学充氢的方法研究了X70管线钢在不同浓度硫酸溶液中的氢致开裂(HIC)行为.结果表明,增大充氢电流密度、延长充氢时间以及降低充氢溶液的pH值能够促进氢进入X70钢基体.微观观察表明,X70钢中的非金属夹杂物如氮化物和氧化物等对其氢致开裂行为有不同的影响,氮化物夹杂并不是充氢裂纹的必然形核位置,而Mg,Al,Ca等的氧化物是更为有害的氢致裂纹源.通过氢渗透实验测得室温下氢在X70钢中的有效扩散系数为3.34×10-9cm2/s.对XT0管线钢基体及焊缝试样电化学预充氢后拉伸,焊缝试样的拉伸塑性较差,各项塑性指标在充氢前、后均低于X70钢基体材料.  相似文献   

13.
Hydrogen permeation through a welded joint of an ASTM A516 grade60 steel immersed in a H2S solution was investigated using the scanning photoelectrochemical microscopy, an in situ technique providing images of the spatial distribution of hydrogen diffusion in real time and with good resolution. The paper presents images of hydrogen spatial distribution in the material including the base metal and heat-affected zone. Electrochemical impedance measurements were also performed in order to complement the information obtained.  相似文献   

14.
The effect of residual stresses on electrochemical permeation in iron membrane was investigated. Four thermal and mechanical treatments were chosen to obtain different surface states in relation to the residual stresses.Residual stresses were determined by X-ray diffraction (XRD) using the Macherauch and Müller method. The results were completed by the microhardness measurements. For all iron membranes, compressive residual stresses were obtained.Electrochemical permeation experiments using a Devanathan and Stachurski cell were employed to determine the hydrogen permeation behaviour of the various iron membranes. The latter was charged with hydrogen by galvanostatic cathodic polarization in 0.1 M NaOH at 25 °C. The experimental results revealed that hydrogen permeation rate increases with increasing residual stresses introduced in iron membranes.  相似文献   

15.
Stress corrosion cracking behaviour of API-5L-X52 steel under cathodic protection in near-neutral and high pH conditions was studied using slow strain rate test method and electrochemical measurements. The slow strain rate test showed ductile and brittle fracture feature at low and high applied potentials, respectively. In order to identify the mechanism contributes in stress corrosion cracking; the electrochemical potentiodynamic polarisation test was done at fast and slow sweep rate. The results revealed that at near-neutral pH condition the anodic dissolution at crack tip was the dominant mechanism. While at high pH medium, the hydrogen based mechanism was dominant.  相似文献   

16.
Hydrogen permeation (diffusion) is strongly influenced by the local hydrogen concentration and by the density and depth of traps. Consequently hydrogen diffusion cannot be described by a constant effective diffusivity as suggested in standards and several papers.A modelling study for diffusion of hydrogen in metals with traps is presented. Simulations are performed for a charging and discharging process, showing a remarkable asymmetry. The actual chemical diffusivity ranges over several orders of magnitude depending on the hydrogen concentration as well as the density and depth of traps. Consequently, the concept of effective diffusivity outlined in standards and many publications fails.  相似文献   

17.
Abstract

Accelerated low water corrosion of steel piling in sea water harbours in the UK, Europe and elsewhere has been shown recently to be the result primarily of water pollution. Elevated levels of dissolved inorganic nitrogen in sea and brackish waters are responsible for microbiologically influenced corrosion of steel piling below the low water tide level. This is demonstrated in field data from 13 Australian experimental sites, nine US naval sites and some severe sites in Australia, Norway, Japan and the UK. Localised perforation of sheet piling, often associated only with the webs of U and Z profile piles, is shown to be the result of centreline segregation, porosity and composition differences in steel profiles. These stem from the steelmaking process and are likely to be less severe for modern steels. The results explain most of the observations for actual steel piling in various harbours, both vertically and horizontally (i.e. for U and Z and other pile profile types).  相似文献   

18.
The corrosion behavior of X60 carbon steel in CO2‐saturated oilfield flooding water inoculated with sulfate‐reducing bacteria (SRB) was investigated using polarization curves and electrochemical impedance spectroscopy (EIS). With the propagation of SRB in the flooding water, the pH values of flooding water increased quickly in the initial 2 days and remained relatively steady during the later stage. Polarization curves showed that the corrosion current density decreased during the first 10 days due to the protection of corrosion products and SRB‐biofilms, and then increased possibly due to the partial detachment of the corrosion products and the biofilms. EIS analysis also showed that the charge transfer resistance increased initially and then decreased with exposure time. In the beginning of corrosion, the anodic dissolution of X60 steel was dominated by CO2. After the formation of SRB‐biofilms, part of FeCO3 corrosion products was converted to incompact FeS precipitates by SRB bio‐mineralization. Thus, the dispersed iron sulfide in SRB‐biofilms and X60 steel base may constitute a galvanic couple, accelerating the localized corrosion of the steel base in the flooding water.  相似文献   

19.
In this research, stress corrosion cracking (SCC) and corrosion behaviour of API 5L X52 carbon steel in 25?wt-% diethanolamine solution, saturated/unsaturated with carbon dioxide and containing 0 and 200?ppm hydrogen sulphide at different temperatures were investigated using slow strain rate test, electrochemical measurement and microscopic analysis. In addition, the presence of heat stable amine salts (HSASs) in the test solution was studied using spectrophotometry and Fourier transform infra-red spectroscopy. Analysis of the results showed that the primary components to form HSASs exist in the solution. The results indicated that SCC is more likely in solutions without amine. Increase in corrosion rate of carbon steel by increase in temperature was clearly observed and concluded that the simultaneous presence of hydrogen sulphide and carbon dioxide in the solution can increase the corrosion rate of carbon steel more than having one of the gases in the solution.  相似文献   

20.
In this study, Hydrogen Induced Cracking (HIC) testing of high strength API 5L grade X70 linepipe hot rolled steel containing Ti was performed to investigate the effects of (Nb, Ti, V)(C, N) particles on HIC susceptibility. By controlling chemical composition and hot rolling parameters, experimental steel with Bainitic ferrite and Bainite microstructures was fabricated. HIC testing was carried out within an acidic condition (pH=2.7±0.1) according to NACE standards with test results showing cracking propagated along coarse (Nb, Ti, V)(C, N) particles at mid-thickness. This is mainly due to centerline segregation and hydrogen blistering between matrix and coarse (Nb, Ti, V)(C, N) particles without external stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号