首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tokamak exhaust is an important part of the deuterium-tritium fuel cycle system in fusion reactions. In this work, we present a laser-induced breakdown spectroscopy (LIBS)-based method to monitor the gas compositions from the exhaust system in the tokamak device. Helium (He), a main impurity in the exhaust gas, was mixed with hydrogen (H2) in different ratios through a self-designed gas distribution system, and sealed into a measurement chamber as a standard specimen. A 532 nm wavelength laser pulse with an output power of 100 mJ was used for plasma excitation. The time-resolved LIBS is used to study the time evolution characteristics of the signal strength, signal-to-background ratio (SBR), signal-to-noise ratio (SNR) and relative standard deviation (RSD) of the helium and hydrogen characteristic lines. The Boltzmann two-line method was employed to estimate the plasma temperature of laser-induced plasma (LIP). The Stark-broadened profile of He I 587.56 nm was exploited to measure the electron density. From these studies, an appropriate time was determined in which the low RSD% was consistent with the high signal-to-noise ratio. The He I 587.56 nm and Hα emission lines with good signal-to-noise ratio were extracted from the spectrum and used in the external standard method and internal standard method for quantitative analysis. The test results for mixed gas showed that the average relative error of prediction was less than 11.15%, demonstrating the great potential of LIBS in detecting impurities in plasma exhaust gas.  相似文献   

2.
Laser-induced breakdown spectroscopy (LIBS) was used to decipher the unique multi-elemental characteristics of Juncus e?usus L. The spectral fingerprints of Juncus e?usus L. were established based on elemental microanalysis via LIBS. Microanalysis and multimode sam?pling methodologies were designed in this study. The relative standard deviation (RSD) approach was performed to optimize the multi-shot measurements. Taking advantage of the capability with no or minimal sample pre-treatment of LIBS, a thermodynamic chart of four elements (Mg, Ca, Ba, and Na) was created from twelve collection regions. The diagram of elemental distribution on a micro-scale was generated to explore the nature of Juncus e?usus L. by LIBS. The results demon?strated that LIBS is a promising technique for rapid elemental microanalysis of heterogeneous samples.  相似文献   

3.
Accurate measurement of trace heavy metal mercury(Hg) in flue gas of coal-fired units is great significance for ecological and environmental protection.Mixed gas was used to simulate the actual flue gas of a power plant in this study.A laser-induced breakdown spectroscopy(LIBS)system for Hg measurement in mixed gas was built to study the effect of mixed gas pressure,Hg concentration in mixed gas and delay time on Hg measurement.The experimental results show that the appropriate low mixed gas pressure can obtain high Hg signal intensity and signal to noise ratio.The Hg signal intensity and signal to noise ratio increased with the increase of Hg concentration in mixed gas.The Hg signal intensity and signal to noise ratio decreased with the increase in delay time.According to the above results,the optimized measurement conditions can be determined.Different Hg concentrations in mixed gas were quantitatively analyzed by the internal standard method and traditional calibration method respectively.The relative error of prediction of the test sample obtained by the internal standard method was within 11.11%.The relative error of prediction of the traditional calibration method was less than 14.54%.This proved that the internal standard method can improve the accuracy of quantitative analysis of Hg concentration in flue gas using LIBS.  相似文献   

4.
A mobile fiber-optic laser-induced breakdown spectrometer(FO-LIBS) prototype was developed to rapidly detect a large quantity of steel material online and quantitatively analyze the trace elements in a large-diameter steel tube.Twenty-four standard samples and a polynomial fitting method were used to establish calibration curve models.The R~2 factors of the calibration curves were all above 0.99,except for Cu,indicating the elements' strong self-absorption effect.Five special steel materials were rapidly detected in the steel mill.The average absolute errors of Mn,Cr,Ni,V,Cu,and Mo in the special steel materials were 0.039,0.440,0.033,0.057,0.003,and0.07 wt%,respectively,and their average relative errors fluctuated from 2.9% to 15.7%.The results demonstrated that the performance of this mobile FO-LIBS prototype can be compared with that of most conventional LIBS systems,but the more robust and flexible characteristics of the FO-LIBS prototype provide a feasible approach for promoting LIBS from the laboratory to the industry.  相似文献   

5.
Our recent work has determined the carbon content in a melting ferroalloy by laser-induced breakdown spectroscopy (LIBS). The emission spectrum of carbon that we obtained in the laboratory is suitable for carbon content determination in a melting ferroalloy but we cannot get the expected results when this method is applied in industrial conditions: there is always an unacceptable error of around 4% between the actual value and the measured value. By comparing the measurement condition in the industrial condition with that in the laboratory, the results show that the temperature of the molten ferroalloy samples to be measured is constant under laboratory conditions while it decreases gradually under industrial conditions. However, temperature has a considerable impact on the measurement of carbon content, and this is the reason why there is always an error between the actual value and the measured value. In this paper we compare the errors of carbon content determination at different temperatures to find the optimum reference temperature range which can fit the requirements better in industrial conditions and, hence, make the measurement more accurate. The results of the comparative analyses show that the measured value of the carbon content in molten state (1620 K) is consistent with the nominal value of the solid standard sample (error within 0.7%). In fact, it is the most accurate measurement in the solid state. Based on this, we can effectively improve the accuracy of measurements in laboratory and can provide a reference standard of temperature for the measurement in industrial conditions.  相似文献   

6.
Laser-induced breakdown spectroscopy(LIBS) is a qualitative and quantitative analytical technique with great potential in the cement industrial analysis. Calibration curve(CC) and support vector regression(SVR) methods coupled with LIBS technology were applied for the quantification of three types of cement raw meal samples to compare their analytical concentration range and the ability to reduce matrix effects, respectively. To reduce the effects of fluctuations of the pulse-to-pulse, the unstable ablation and improve the reproducibility, all of the analysis line intensities were normalized on a per-detector basis. The prediction results of the elements of interest in the three types of samples, Ca, Si, Fe, Al, Mg, Na, K and Ti, were compared with the results of the wet chemical analysis. The average relative error(ARE),relative standard deviation(RSD) and root mean squared error of prediction(RMSEP) were employed to investigate and evaluate the prediction accuracy and stability of the two prediction methods. The maximum average ARE of the CC and SVR methods is 34.62% instead of 6.13%,RSD is 40.89% instead of 7.60% and RMSEP is 1.34% instead of 0.43%. The results show that SVR method can accurately analyze samples within a wider concentration range and reduce the matrix effects, and LIBS coupled with it for a rapid, stable and accurate quantification of different types of cement raw meal samples is promising.  相似文献   

7.
Improvement of measurement precision and repeatability is one of the issues cur?rently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quantitative analysis. It was found that there was great poten?tial to improve the signal quality and repeatability by reducing the laser beam divergence angle using a suitable beam expander (BE). In the present work, the influences of several experimental parameters for the case with BE are studied in order to optimize the analytical performances: the signal to noise ratio (SNR) and the relative standard deviation (RSD). We demonstrate that by selecting the optimal experimental parameters, the BE-included LIBS setup can give higher SNR and lower RSD values of the line intensity normalized by the whole spectrum area. For validation purposes, support vector machine (SVM) regression combined with principal component analysis (PCA) was used to establish a calibration model to realize the quantitative analysis of the ash content. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for ash content analysis is estimated to be 0.31%, while the average relative error is 2.36%.  相似文献   

8.
采用微波消解对环境水样进行前处理、应用电感耦合等离子体质谱法(ICP-MS)快速测定环境水样中钍含量,对测量条件和微波消解条件进行了优化,并从内标的选择、检出限、精密度、准确度、回收率以及实际样品测量等方面对结果进行分析。结果表明:以209Bi为内标分析水中钍时,测量结果的相对偏差最小,为0.2%~1.3%;该方法检出限为0.003 μg/L;考察了4个浓度水平下的方法精密度,相对标准偏差(sr)均小于6.0%(n=6);进行了3个不同浓度水平下的标准物质测量和加标回收率实验,测定值与标准值基本吻合,加标回收率为93.4%~106.2%;对20个实际环境水样中钍质量浓度进行了测量,测定结果在2016年测量值范围之内,验证了该法测量环境水样中钍含量的实用性。  相似文献   

9.
Laser-induced breakdown spectroscopy(LIBS) is a potential technology for online coal property analysis,but successful quantitative measurement of calorific value using LIBS suffers from relatively low accuracy caused by the matrix effect.To solve this problem,the support vector machine(SVM) and the partial least square(PLS) were combined to increase the measurement accuracy of calorific value in this study.The combination model utilized SVM to classify coal samples into two groups according to their volatile matter contents to reduce the matrix effect,and then applied PLS to establish calibration models for each sample group respectively.The proposed model was applied to the measurement of calorific values of 53 coal samples,showing that the proposed model could greatly increase accuracy of the measurement of calorific values.Compared with the traditional PLS method,the coefficient of determination(R2) was improved from 0.93 to 0.97,the root-mean-square error of prediction was reduced from 1.68 MJ kg~(-1) to1.08 MJ kg~(-1),and the average relative error was decreased from 6.7% to 3.93%,showing an overall improvement.  相似文献   

10.
Fuel retention measurement on plasma-facing components is an active field of study in magnetic confinement nuclear fusion devices.The laser-induced breakdown spectroscopy(LIBS)diagnostic method has been well demonstrated to detect the elemental distribution in PFCs.In this work,an upgraded co-axis LIBS system based on a linear fiber bundle collection system has been developed to measure the hydrogen(H) retention on a tantalum(Ta) sample under a vacuum condition.The spatial resolution measurement of the different positions of the LIBS plasma can be achieved simultaneously with varying delay times.The temporal and spatial evolution results of LIBS plasma emission show that the H plasma observably expands from the delay times of 0-200 ns.The diameter of Ta plasma is about 6 mm which is much less than the size of H plasma after 200 ns.The difference in the temporal and spatial evolution behaviors between H plasma and Ta plasma is due to the great difference in the atomic mass of H and Ta.The depth profile result shows that H retention mainly exists on the surface of the sample.The temporal and spatial evolution behaviors of the electron excited temperature are consistent with that of the Ta emission.The result will further improve the understanding of the evolution of the dynamics of LIBS plasma and optimize the current collection system of in situ LIBS in fusion devices.  相似文献   

11.
The insoluble aluminum content in steel samples has a significant influence on the quality of the steel.In this paper,laser-induced breakdown spectroscopy(LIBS)is used to analyze the insoluble aluminum content in steel samples using a scanning mode.The average intensity plus 2.5 standard deviations was iterated and the final iteration value was taken as the threshold that distinguishes soluble and insoluble aluminum,and thus total and soluble aluminum content calibration curves were generated.Using the relevant total and soluble aluminum content calibration curves,the total and soluble aluminum contents in steel samples could be determined.The insoluble aluminum content could be determined by subtracting the soluble aluminum content from the total aluminum content.The insoluble aluminum content of standard samples and process product samples were determined using the present mathematical model;the results agreed well with the certified reference values.This method could be used to rapidly characterize the insoluble aluminum content in steel samples.  相似文献   

12.
In this paper, we developed a portable laser-induced breakdown spectroscopy(LIBS) using an optical fiber to deliver laser energy and used it to quantitatively analyze minor elements in steel.The R~2 factors of calibration curves of elements Mn, Ti, V, and Cr in pig iron were 0.9965,0.9983, 0.9963, and 0.991, respectively, and their root mean square errors of cross-validation were 0.0501, 0.0054, 0.0205, and 0.0245 wt%, respectively. Six test samples were used for the validation of the performance of the calibration curves established by the portable LIBS. The average relative errors of elements Mn, Ti, V, and Cr were 2.5%, 11.7%, 13.0%, and 5.6%,respectively. These results were comparable with most results reported in traditional LIBS in steel or other matrices. However, the portable LIBS is flexible, compact, and robust, providing a promising prospect in industrial application.  相似文献   

13.
Although laser-induced breakdown spectroscopy (LIBS), as a fast on-line analysis technology, has great potential and competitiveness in the analysis of chemical composition and proximate analysis results of coal in thermal power plants, the measurement repeatability of LIBS needs to be further improved due to the difficulty in controlling the stability of the generated plasmas at present. In this paper, we propose a novel x-ray fluorescence (XRF) assisted LIBS method for high repeatability analysis of coal quality, which not only inherits the ability of LIBS to directly analyze organic elements such as C and H in coal, but also uses XRF to make up for the lack of stability of LIBS in determining other inorganic ash-forming elements. With the combination of elemental lines in LIBS and XRF spectra, the principal component analysis and the partial least squares are used to establish the prediction model and perform multi-elemental and proximate analysis of coal. Quantitative analysis results show that the relative standard deviation (RSD) of C is 0.15%, the RSDs of other elements are less than 4%, and the standard deviations of calorific value, ash content, sulfur content and volatile matter are 0.11 MJ kg−1, 0.17%, 0.79% and 0.41% respectively, indicating that the method has good repeatability in determination of coal quality. This work is helpful to accelerate the development of LIBS in the field of rapid measurement of coal entering the power plant and on-line monitoring of coal entering the furnace.  相似文献   

14.
In this paper,we present a study on the spatial confinement effect of laser-induced plasma with a cylindrical cavity in laser-induced breakdown spectroscopy(LIBS).The emission intensity with the spatial confinement is dependent on the height of the confinement cavity.It is found that,by selecting the appropriate height of cylindrical cavity,the signal enhancement can be significantly increased.At the cylindrical cavity(diameter = 2 mm) with a height of 6 mm,the enhancement ratio has the maximum value(approximately 8.3),and the value of the relative standard deviation(RSD)(7.6%) is at a minimum,the repeatability of LIBS signal is best.The results indicate that the height of confinement cavity is very important for LIBS technique to reduce the limit of detection and improve the precision.  相似文献   

15.
The influence of the target temperature on the molecular emission of femtosecond laser-induced breakdown spectroscopy(LIBS) was investigated experimentally. An Al target was ablated to produce laser-induced plasma. The Al target was uniformly heated to a maximum of 250℃. The measured molecular emission was AlO(△ν=0) from the femtosecond LIBS of the Al target.The measurements indicated that the molecular emission of AlO increased as the temperature of the Al target increased. In addition, a two-temperature model was used to simulate the evolution of the electron and lattice temperature of the Al target with different initial temperatures. The simulated results showed that the electron and lattice temperatures of Al irradiated by the femtosecond laser increased as the initial temperature of the Al target increased; also, the simulated ablated depth increased. Therefore, an increase in the initial Al target temperature resulted in an enhancement in the spectral signal of AlO from the femtosecond LIBS of Al,which was directly related to the increase in the size of the ablated crater. The study suggested that increasing the temperature of the target improves the intensity of molecular emission in femtosecond LIBS.  相似文献   

16.
The influence of the target temperature on the molecular emission of femtosecond laser-induced breakdown spectroscopy (LIBS) was investigated experimentally.An Al target was ablated to produce laser-induced plasma.The Al target was uniformly heated to a maximum of 250 ℃.The measured molecular emission was AlO (△υ =0) from the femtosecond LIBS of the Al target.The measurements indicated that the molecular emission of AIO increased as the temperature of the A1 target increased.In addition,a two-temperature model was used to simulate the evolution of the electron and lattice temperature of the Al target with different initial temperatures.The simulated results showed that the electron and lattice temperatures of Al irradiated by the femtosecond laser increased as the initial temperature of the A1 target increased;also,the simulated ablated depth increased.Therefore,an increase in the initial A1 target temperature resulted in an enhancement in the spectral signal of AlO from the femtosecond LIBS of Al,which was directly related to the increase in the size of the ablated crater.The study suggested that increasing the temperature of the target improves the intensity of molecular emission in femtosecond LIBS.  相似文献   

17.
Fast neutron multiplicity counting (FNMC) analysis method can effectively measure the properties of samples. Based on the fourth-order FNMC analytical equations, a set of three-layer fast neutron multiplicity counters with six liquid scintillators per layer was constructed for Geant4 simulation, and the values of related parameters were determined. Metal Pu sample with 1 cm iron, aluminum, carbon, and stainless steel packaging material was externally simulated, and the sample satisfied the assumption by the equation adaptive analysis. The measurement parameters such as detection efficiency and multiplicity counting rate were simulated. When the mass of Pu sample is less than 500 g, the increase of sample solution mass deviation is less than 1.20% with carbon as packaging material, and the influence of iron material and stainless steel material is less. According to the measurement results, the self-multiplication factor was corrected for the sample without shell, and the third-order polynomial fitting equation was obtained and the goodness of fit is 0.933. The corrected solution mass deviation of sample with mass less than 1 kg is less than 6.00%. The results show that the medium-heavy metal with thickness of 1 cm has little effect on the measurement of Pu samples. The combination of the fast neutron multiplicity counter and the coefficient correction method can achieve more accurate measurement of the sample properties.  相似文献   

18.
Laser-induced breakdown spectroscopy(LIBS) combined with K-means algorithm was employed to automatically differentiate industrial polymers under atmospheric conditions.The unsupervised learning algorithm K-means were utilized for the clustering of LIBS dataset measured from twenty kinds of industrial polymers.To prevent the interference from metallic elements,three atomic emission lines(C I 247.86 nm,H I 656.3 nm,and O I 777.3 nm) and one molecular line C–N(0,0) 388.3 nm were used.The cluster analysis results were obtained through an iterative process.The Davies–Bouldin index was employed to determine the initial number of clusters.The average relative standard deviation values of characteristic spectral lines were used as the iterative criterion.With the proposed approach,the classification accuracy for twenty kinds of industrial polymers achieved 99.6%.The results demonstrated that this approach has great potential for industrial polymers recycling by LIBS.  相似文献   

19.
快中子多重性计数(fast neutron multiplicity counting, FNMC)分析方法能有效实现对样品属性的测量。本文在研究四阶FNMC分析方程的基础上,利用Geant4模拟搭建了1套3层、每层6个液闪的快中子多重性计数器,并确定了相关参数的数值。模拟设置外部具有1 cm厚的铁、铝、碳和不锈钢包装材料的金属Pu样品,通过方程适应性分析,该放射源基本满足设定的假设。对探测效率和多重计数率等测量参数进行模拟,当Pu样品质量在500 g以内时,由于增加碳作为包装材料,使得样品求解质量偏差增大的幅度小于1.20%,铁材料和不锈钢材料影响较小。根据测量结果,对无外壳条件下的样品进行增殖系数修正,得到三阶多项式拟合方程,拟合优度为0.933,质量在1 kg以内的样品,修正后的求解质量偏差小于6.00%。研究结果表明:1 cm厚的中重金属对Pu样品的测量影响较小,模拟搭建的快中子多重性计数器和系数修正相结合的方式实现了对样品属性的较准确测量。  相似文献   

20.
In this study,a stand-off and collinear double pulse laser-induced breakdown spectroscopy(DP LIBS) system was designed,and the magnesium alloy samples at a distance of 2.5 m away from the LIBS system were measured.The effect of inter-pulse delay on spectra was studied,and the signal enhancement was observed compared to the single pulse LIBS(SP LIBS).The morphology of the ablated crater on the sample indicated a higher efficiency of surface pretreatment in DP LIBS.The calibration curves of Ytterbium(Y) and Zirconium(Zr) were investigated.The square of the correlation coefficient of the calibration curve of element Y reached up to 0.9998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号