首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
针对某660 MW超临界墙式切圆燃烧直流煤粉锅炉在30%负荷下无法长时间稳定燃烧的问题,选取多种富氧配风方式对其进行低负荷下富氧燃烧改造的数值模拟研究,对比分析该电厂30%负荷下空气工况及改造后3种富氧配风工况下炉内速度场、温度场和氧浓度场等各项模拟参数。结果表明:在30%负荷下,通过开启不同层一、二次风喷口及在中间层通入富氧二次风的配风方式,使得煤粉燃烧特性得到明显改善,煤粉在炉内停留时间增加,燃烧器浓、淡侧煤粉气流都能及时地着火燃烧,主燃烧器区温度维持在1 750 K以上,较初始工况提高了近200K,为锅炉低负荷稳定燃烧提供了有利条件,工况三是该墙式切圆锅炉低负荷下较为理想的运行工况。  相似文献   

2.
富氧燃烧锅炉初探   总被引:2,自引:0,他引:2  
牛天况 《锅炉技术》2008,39(1):25-31
介绍了不同目的的锅炉富氧燃烧技术,重点分析了膜法富氧对于锅炉性能所带来的影响,对于进一步发展膜法富氧锅炉技术和扩大应用提出了建议.  相似文献   

3.
为研究采用富氧燃烧方式煤粉锅炉的燃烧特性,利用Fluent软件对一台T型煤粉锅炉的富氧燃烧过程进行了数值模拟,得到了一次风含氧体积分数变化时炉膛内温度场、速度场和烟气各组分物质的量浓度的分布.结果表明:富氧条件下整个炉膛温度水平高于空气助燃条件下;当含氧体积分数由21%增大至33%时,炉膛平均温度由1 413.2K升高为1 447.1K;当含氧体积分数增大至27%时,炉膛平均温度变化较明显,达到1 435.6K;当含氧体积分数大于29%时,炉膛平均温度变化不明显;变一次风风量富氧燃烧方式的含氧体积分数最佳范围为27%~29%.  相似文献   

4.
以SBS-Ⅱ型富氧燃烧中试锅炉为研究对象,对燃烧过程的反应机理和物性参数进行了分析和修正,采用数值模拟方法对炉膛富氧燃烧的流场和温度场进行了研究.结果表明:富氧燃烧下煤粉随一次风气流与二次风气流混合后的燃烧更为剧烈,26%氧分压富氧燃烧下的火焰形状和温度场分布与空气燃烧下基本保持一致,能够实现传热特性相匹配;随着到燃烧器扩口距离的增加,中心回流量呈现先增大后减小的趋势,最大回流量对应的位置基本一致,旋流强度为0.8时的回流量最大,稳燃效果明显且煤粉燃尽率较高.  相似文献   

5.
反射炉燃油富氧燃烧三维数值模拟   总被引:1,自引:0,他引:1  
对燃烧过程的数值模拟已成为工业炉窑辅助设计、优化运行、故障诊断等环节的重要手段。以某铜厂反射炉为原型,建立了三维模型,运用PDF燃烧机理模型对燃油雾化燃烧过程进行了数值模拟仿真,研究了不同富氧工况下的反射炉火焰空间温度场变化和热力型NO浓度分布的影响规律。结果表明,改变富氧体积分数对炉内温度场分布和热力型NO分布规律有着较大的影响,模拟结果为反射炉设计提供了理论计算依据。  相似文献   

6.
富氧燃烧技术在循环流化床锅炉中的研究综述   总被引:2,自引:0,他引:2  
对富氧燃烧技术在循环流化床锅炉的研究现状进行了总结,阐述了富氧燃烧的特点,分析了富氧燃烧下循环流化床锅炉污染物排放特性和炉膛换热,温度分布以及锅炉总计结构布置。指出富氧燃烧在循环流化床锅炉中应用是一项值得重点研究的洁净煤燃烧技术。  相似文献   

7.
闫凯  张建文 《锅炉技术》2013,(1):35-40,47
以常规锅炉燃料燃烧计算方法为基础,对富氧燃烧锅炉的燃料燃烧计算方法展开研究。通过将富氧锅炉与常规锅炉的热力系统进行比较,建立了进行富氧锅炉燃料燃烧计算的基本模型。在此基础上首先提出了富氧燃烧条件下燃料所需理论助燃剂量和理论烟气量的计算方法,随后进行了考虑烟气再循环和不考虑烟气再循环2种条件下的实际烟气量的分析计算,其中包括各种烟气成分的体积量的计算,最后根据富氧燃烧锅炉热力系统的特点,推导出了富氧燃烧条件下烟气质量、烟气密度、飞灰质量浓度和烟气焓的计算公式。对富氧燃烧条件下锅炉的燃料燃烧计算进行了详细分析,为今后发展和完善富氧锅炉热力计算方法提供必要的理论基础。  相似文献   

8.
膜法富氧试验及富氧燃烧   总被引:9,自引:1,他引:8  
介绍膜法富氧的原理和作者进行的富氧试验,阐明富氧燃烧的意义及工程应用的特点。  相似文献   

9.
600MW微富氧燃烧煤粉锅炉优化设计   总被引:1,自引:1,他引:0  
以某600 MW煤粉锅炉为例,进行了微富氧燃烧方式下锅炉的结构概念设计及受热面优化,并和空气燃烧、纯氧燃烧模式下的特性参数进行了比较.结果表明:与空气燃烧及纯氧燃烧相比,微富氧燃烧模式下单位时间炉膛内烟气量减少,理论燃烧温度升高,辐射换热加强;烟气与工质的辐射换热量及对流换热量与前两者相比均有很大不同,因此需要对其烟气、工质两侧的能量分布进行重新匹配;优化设计后微富氧燃烧锅炉本体尺寸减小,受热面的布置也发生了很大改变,总受热面面积比空气燃烧时减少了46.5%.  相似文献   

10.
对常规空气燃烧传热计算方法进行了修正,使其适用于富氧燃烧方式,并对灰气体加权模型(WSGG)的参数进行优化和修正,得到了烟气发射率与温度、辐射层有效厚度和分压比的关系;以美国国家标准技术局(NIST)数据库数据为标准,对富氧燃烧方式下烟气各组分的导热系数、运动黏度和普朗特数等物性参数进行拟合,采取先组分后混合的方式对对流传热计算方法进行了改进,并对200 MW富氧燃煤锅炉进行传热性能研究.结果表明:富氧燃烧方式下烟气中CO2物性参数的拟合结果与真实值的误差小于0.61%;在富氧燃烧干循环26%O2体积分数、湿循环29 %O2体积分数下,各受热面的吸热量和出口烟气温度等主要参数均能与空气燃烧方式下的对应参数较好吻合,基本可以达到同一锅炉系统2种燃烧方式的兼容运行.  相似文献   

11.
12.
低氮氧化物燃烧技术是控制NOx生成的技术.低氮氧化物燃烧技术包括:低氮氧化物燃烧器、空气分级技术和再燃技术.目前运用最广泛的就是空气分级燃烧技术,文中对某200 MW机组锅炉进行低氮燃烧改造,确定了燃烧器主要的结构参数.在计算流体力学软件FLUENT平台上,利用ICEM软件建模并划分的网格对该200 MW机组锅炉进行低氮燃烧的数值模拟计算,得到空气分级燃烧之后的炉内温度场、NO浓度场,得出结论:采用空气分级技术后,NO排放量显著降低.锅炉满负荷运行时,通过空气分级燃烧,取得了37.89%的NOx脱除率.  相似文献   

13.
双区燃烧是降低Nox排放,防止炉内结渣的一项新技术.利用CFD软件平台,采用数值模拟方法对其某电厂200 mm四角切圆锅炉改造前后炉内燃烧过程进行研究.计算结果表明:采用双区燃烧技术使炉膛中形成了温度,组分和颗粒相参数显著不同的中心区和近壁区.由于附壁射流的作用,使得高温区集中在炉膛中部,有效的防止了锅炉结渣;改造后炉内有比常规燃烧方式锅炉更大的还原气氛区域,抑制了Nox的产生,使其排放降低34.6 %.  相似文献   

14.
介绍了200MW循环流化床锅炉的冷态试验和燃烧优化调整试验,分析了各因素对循环流化床锅炉运行的影响,提出了适用于200MW循环流化床的参数要求,研究工作为提高循环流化床锅炉运行效率和节能减排积累了宝贵经验。  相似文献   

15.
以典型富氧燃烧锅炉风烟燃烧稳态模型为基础,对35MW富氧燃烧系统稳态运行工况下的风烟燃烧过程数据进行仿真,并对系统运行中涉及的配风、注氧、漏风控制和CO_2捕集工艺优化等主要问题进行详细分析,提出了改进运行特性和工艺参数的调节手段.结果表明:系统漏风率限制在3.6%以下时,干循环烟气理论上可获得80%以上的CO_2体积分数;高效的烟气水分脱除有利于系统运行和循环烟气中CO_2的捕集;不同的供氧配风方式将会造成燃烧优化、系统安全和控制调节的性能差异.  相似文献   

16.
对某电厂300 MW贫煤锅炉低氮燃烧改造前后不同负荷进行数值模拟,研究分析改造前后锅炉炉内流场、温度场和组分浓度分布的变化,找到氮氧化物排放规律。计算结果表明:炉膛流动燃烧符合四角切圆锅炉实际运行情况。低NOx燃烧改造后,在炉膛出口过量空气系数一定条件下,各负荷运行NOx排放浓度下降均在40%以上,锅炉效率也有不同程度的提高,同时未带来明显的负面效应,改造对同类锅炉改造具有指导意义。  相似文献   

17.
600MW旋流对冲燃煤锅炉燃烧过程的数值模拟研究   总被引:1,自引:0,他引:1  
数值模拟是研究锅炉炉内燃烧过程的常用方法。本文采用k—ε等数学模型,对一台600MW超临界锅炉在不同燃尽风风量时炉内的燃烧情况进行了数值模拟。结果表明:改变燃尽风风量对炉内温度场分布、煤粉燃尽率等有较大的影响。  相似文献   

18.
针对某发电公司2#锅炉严重结焦而长期出力不足问题进行了全面的试验研究,分析出锅炉燃用强结焦煤、炉膛宽深比大和采用大切角是结焦严重的主要原因,提出并实施燃烧器改造及对燃烧器区域裸露炉墙增加水冷壁的方案,在燃烧调整试验中,首次采用了调整二次风大风箱风压的技术,该技术是解决锅炉严重结焦、平衡锅炉两侧渣量的重要手段.通过综合治理.锅炉严重结焦问题得到根本缓解,锅炉最大连续出力由560 t/h提高到670 t/h.  相似文献   

19.
《动力工程学报》2017,(6):425-431
为了有效预防水冷壁高温腐蚀、控制NO_x排放量,进行了某墙式对冲燃烧锅炉燃烧器低氮配风优化设计与改造,在主燃烧区加装"非对称矩形高速直流贴壁风"系统.结果表明:实测水冷壁贴壁气氛大幅改善,贴壁O_2体积分数明显升高,由0.3%升高至3.0%;炉膛前后墙贴壁烟温呈下降趋势,降幅100K左右,有效降低了水冷壁高温爆管风险.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号