首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
By blending a rigid polymer, sodium alginate (SA), and a flexible polymer, poly(vinyl alcohol) (PVA), SA/PVA blend membranes were prepared for the pervaporation separation of ethanol–water mixtures. The rigid SA membrane showed a serious decline in flux and a increase in separation factor due to the relaxation of polymeric chains, whereas the flexible PVA membrane kept consistent membrane performance during pervaporation. Compared with the nascent SA membrane, all of the blend membranes prepared could have an enhanced membrane mobility by which the relaxation during pervaporation operation could be reduced. From the pervaporation separation of the ethanol–water mixtures along with the temperature range of 50–80°C, the effects of operating temperature and PVA content in membrane were investigated on membrane performance, as well as the extent of the relaxation. The morphology of the blend membrane was observed with PVA content by a scanning electron microscopy. The relaxational phenomena during pervaporation were also elucidated through an analysis on experimental data of membrane performance measured by repeating the operation in the given temperature range. SA/PVA blend membrane with 10 wt % of PVA content was crosslinked with glutaraldehyde to enhance membrane stability in water, and the result of pervaporation separation of an ethanol–water mixture through the membrane was discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:949–959, 1998  相似文献   

2.
The purpose of this article was to develop new membranes with a high selectivity and permeation rate for separation of an alcohol/water system. Crosslinked alginate composite membranes were prepared by casting an aqueous solution of alginate and 1,6‐hexanediamine (HDM) onto a hydrolyzed microporous polyacrylonitrile (PAN) membrane. The influence of hydrolysis of the support membrane and crosslinking agent content in a dense layer on the selectivity and flux was studied and it was shown that both could improve the separation performance of the composite membrane greatly. The countercation of alginate coatings as a dense separating layer also influenced the separation properties of the membrane, which was better for K+ than for Na+. This novel composite membrane with K+ as a counterion has a high separation factor of 891 and a good permeation rate of 591 g m−2 h−1 for pervaporation of a 90 wt % ethanol aqueous solution at 70°C. At the same time, SEM micrographs showed that the pore structure of the PAN microporous membrane is changed by hydrolysis. The reason for the influence of the preparation conditions on the separation performance of the novel membrane is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3054–3061, 2000  相似文献   

3.
Polyion complex membranes made by blending 84% deacetylated chitosan and sodium alginate biopolymers followed by crosslinking with glutaraldehyde were tested for the separation of ethanol–water mixtures. The membranes were characterized by FTIR to verify the formation of the polyion complex, X-ray diffraction (XRD) to observe the effects of blending on crystallinity, DSC, and TGA to investigate the thermal stability, and tensile testing to assess their mechanical stability. The effect of experimental parameters such as feed composition, membrane thickness and permeate pressure on separation performance of the crosslinked membranes was determined. Sorption studies were carried out to evaluate the extent of interaction and degree of swelling of the blend membranes, in pure as well as mixtures of the two liquids. Crosslinked blend membranes were found to have good potential for breaking the azeotrope of 0.135 mol fraction of water and a high selectivity of 436 was observed at a reasonable flux of 0.22 kg/(m2 10 μm h). Membrane selectivities were found to improve with decreasing membrane pressure but remained relatively constant for variable membrane thickness. Increasing membrane thickness decreased the flux and higher permeate pressure caused a reduction in both flux and selectivity.  相似文献   

4.
在海藻酸钠基质中引入磷钨酸颗粒,制备了一种高亲水性渗透汽化杂化膜。由热失重等分析手段对膜进行了表征,并在不同温度下(30~60 ℃)通过分离80%~95%的甲醇水溶液,测试了杂化膜的渗透汽化性能,实验结果表明:添加了磷钨酸的杂化膜,其分离性能显著高于纯海藻酸钠膜,当磷钨酸含量为6%时,30 ℃下分离水含量5%的溶液,膜通量达到318.2 g/(m2?h),分离因子达到656.9,分别是纯海藻酸钠膜的3.7倍和26.3倍。利用阿累尼乌斯关系式考察了膜通量与温度之间的关系,发现溶液通过膜的活化能随着磷钨酸含量的增加而降低。表明,磷钨酸的加入使得渗透物在杂化膜内更容易透过。  相似文献   

5.
Dense sodium alginate (SA) membranes crosslinked with glutaraldehyde (GA) have been prepared by the solution method, wherein a nonsolvent of SA (acetone) was used in a reaction solution instead of an aqueous salt solution. Through infrared radation, X-ray diffractometry, and the swelling measurement, the crosslinking reaction between the hydroxyl groups of SA and the aldehyde groups of GA was characterized. To investigate the selective sorption behavior of the crosslinked SA membranes, swelling measurements of the membranes in ethanol-water mixtures of 70–90 wt % ethanol contents were conducted by equipment that was able to measure precisely the concentration and amount of the liquid absorbed in the membranes. It was observed that the crosslinking could reduce both the solubility of water in the resulting membrane and the permselectivity of the membrane toward water at the expense of membrane stability against water. The pervaporation separation of a ethanol-water mixture was conducted with the membranes prepared at different GA contents in the reaction solution. When the membrane was prepared at a higher GA content, both flux and separation factor to water were found to be reduced, thus resulting from the more crosslinking structure in it. The pervaporation separations of ethanol-water mixtures were also performed at different feed compositions and temperatures ranging from 40 to 80°C. A decline in the pervaporative performance was observed due to the relaxation of polymeric chains taking place during pervaporation, depending on operating temperature and feed composition. The relaxational phenomena were also elucidated through an analysis on experimental data of the membrane performance measured by repeating the operation in the given temperature range. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 209–219, 1998  相似文献   

6.
Composite membranes of sodium alginate prepared by incorporating nanosized‐activated charcoal particles were prepared and characterized for the extent of cross‐linking, thermal stability, and mechanical strength properties using Fourier transform infrared, differential scanning calorimetry, and universal testing machine, respectively. The membranes were tested for pervaporation (PV) dehydration of isopropanol (IPA), ethanol (EtOH), 1,4‐dioxane (1,4‐D), and tetrahydrofuran (THF) at their azeotropic compositions. Improved PV performances of the composite membranes were observed compared with plain sodium alginate membrane for all the azeotropes. Sorption was studied to evaluate the extent of interactions between liquids and membranes as well as degree of swelling of the membranes in the chosen aqueous‐organic mixtures. Adding different amounts of activated charcoal into NaAlg offered high water selectivity values of 99.7, 99.1, 99.4, and 99.41%, respectively, for IPA, THF, 1,4‐D, and EtOH. Arrhenius activation parameters were computed from the temperature versus flux plots, which showed systematic trends for different liquids that depended upon their interactions with membranes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
A series of polyion complex (PIC) composite membranes composed of sodium alginate (SA) polyanion and chitosan polycation were prepared by varying the ratio of concentration. The interaction between SA and chitosan was investigated by FTIR, SEM, and X‐ray analysis and was related to mechanical properties and the swelling phenomenon. The overall PIC composite membranes showed the following results: the total thickness of the coating layer was thicker than that of pure SA composite, and increased with increasing the concentration of chitosan solution during PIC formation. This result was attributed to the diffusion of chitosan molecules from the liquid solution into the SA matrix, and the incorporation with SA molecules. For the PIC membranes prepared with different concentrations of polymer solution, their structural differences could not be detected from IR spectra but their morphological differences could be noticeably found from SEM. Furthermore, the amorphousness of PIC membranes and their elongation properties at break increased significantly as a function of polymer contents, whereas the tensile modulus decreased because of the physical transition effect. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 714–725, 2002  相似文献   

8.
那沙沙  李卫星  邢卫红 《化工学报》2016,67(9):3730-3737
为提高海藻酸钠(SA)膜的渗透汽化分离性能,分别采用纳米氧化铝、纳米氧化锆和纳米氧化钛对SA膜进行改性,对比分析了3种不同杂化膜渗透汽化分离性能的差异,并将分离性能较好的杂化膜应用到乙酸与乙醇酯化反应脱水的体系中。系统考察了无机纳米粒子含量对SA膜渗透汽化分离性能的影响,对杂化膜进行了接触角、傅里叶红外(FTIR)、扫描电子显微镜(SEM)、热重/差示扫描量热(TG/DSC)、X射线衍射(XRD)和拉伸强度等表征与分析。结果表明,无机纳米粒子能提高SA膜的热稳定性、机械强度和渗透通量,当无机纳米粒子与SA质量比为0.3时,掺杂TiO2、ZrO2和Al2O3的杂化膜二碘甲烷的接触角依次升高,同时渗透通量也依次升高。SA-0.3Al2O3杂化膜亲水性较好,然而SA-0.3ZrO2杂化膜分离性能最优,50℃下分离水含量10%的乙醇-水溶液,膜渗透通量达到336 g·m-2·h-1,渗透侧水含量99.97%,分离因子29990。酯化反应脱水实验表明,在80℃时,酯化反应脱水实验乙酸转化率均高于无脱水实验乙酸转化率,平衡转化率不断被打破,反应12 h后,转化率由平衡时的79.3%提高到93.9%。  相似文献   

9.
Miscibility studies of sodium carboxymethylcellulose/poly(vinyl alcohol) (NaCMC/PVA) blends of different compositions (100/0, 80 : 20, 60 : 40, 50 : 50, 40 : 60, 20 : 80, and 0 : 100) were investigated using viscometric method. NaCMC, PVA, and their blend membranes were prepared by solution‐casting technique and were then crosslinked with glutaraldehyde (GA). The effect of blend composition on mechanical, swelling, and pervaporation results (flux and selectivity) was also investigated in this study. Attenuated total reflectance–Fourier transform infrared spectroscopy (ATR–FTIR) results showed that the blends are miscible over the entire studied composition range and further confirmed the crosslinking reaction with GA. FTIR studies reveal that the blends containing 50 : 50 (NaCMC/PVA) are an optimum miscible blend. Thermogravimetric analysis confirms that the thermal stability increased with increase in NaCMC content in NaCMC/PVA blend membrane. XRD and DSC showed a corresponding decrease in crystallinity and increase in melting point with increase in NACMC content, respectively. NaCMC/PVA blends of all the composition under study were used for dehydration of isopropyl alcohol at different compositions of IPA/water mixture (90 : 10, 87.5 : 12.5, 85 : 15, and 82.5 : 17.5) at 35°C. Swelling studies and PV results reveal that increase in NaCMC content in the blend leads to an increase in flux of water, whereas selectivity decreases. The optimum flux and selectivity were observed for the blend containing 50 : 50 NaCMC/PVA content at a feed ratio of 87.5 : 12.5 IPA/water. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Dense sodium alginate (SA) membranes crosslinked with glutaraldehyde were prepared by a new solution technique, which had different extents of crosslinking gradient structures. The SA membranes having a crosslinking gradient structure were fabricated by exposing one side of the membrane to the reaction solution while blocking the other side by a polyester film to prevent the reaction solution from contacting it. The extent of the crosslinking gradient was controlled by the exposing time. When the swelling measurements were performed with uniformly crosslinked membranes in aqueous solutions of 70–90 wt % ethanol contents, it was observed that the crosslinking could reduce both the solubility of water in the membrane and the permselectivity of the membrane toward water. The pervaporation separation of the ethanol–water mixture of 90 wt % ethanol content was carried out with membranes with different extents of crosslinking gradients. As the crosslinking gradient was developed more across the membrane, the resulting flux as well as the separation factor to water was found to decrease while the membrane became stable against water. The pervaporation performances of the membranes with different membrane loadings in a membrane cell were also discussed using the schematic concentration and activity profiles of the permeant developed in them. The pervaporation separations of the ethanol/water mixtures through the membrane with an optimal crosslinking gradient were performed at different feed compositions and temperatures ranging from 40 to 80°C. The change in the membrane performance due to the relaxation process during pervaporation was observed with the operating temperature and feed composition. The relaxational phenomena were also elucidated through an analysis of the experimental data of the membrane performance measured by repeating the operation in a given temperature range. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1607–1619, 1998  相似文献   

11.
李赛赛  詹硕  李继定  何静  王璐莹 《化工进展》2021,40(Z1):311-318
当前石化资源遇到储量有限、利用过程对环境不友好等挑战,生物质燃料乙醇作为一种替代性能源崭露头角。渗透汽化是一种分离乙醇的方式,节能、环保,开发天然高选择性渗透汽化膜成为研究热点之一。本文提出利用木质素磺酸钙(CaLS)的亲水性和成膜性,将其与天然多糖海藻酸钠(SA)进行共混,制备了不同CaLS含量的CaLS/SA交联膜。采用傅里叶红外、X射线衍射、接触角和扫描电子显微镜等方法对交联膜进行了表征和分析。结果表明,CaLS能与SA充分均匀混合,并且CaLS的加入能提高SA膜的亲水性。进一步考察了CaLS添加量和操作温度对10%水含量的乙醇溶液分离性能的影响,当CaLS/SA质量比为5%时,CaLS/SA交联膜分离因子达到2872,渗透通量达到796g/(m2 · h),较纯SA膜分别提高了160%和70%,证实了CaLS在膜分离领域的应用潜力。  相似文献   

12.
The structure and the adsorption–desorption properties of zeolite silicalite-I by different treatments after synthesis were studied. The pervaporation properties of the alcohol–water mixture through silicone rubber filled with zeolite silicalite-I by different treatments were also investigated. Treating silicalite-I by acid or/and under steam was found to eliminate the metallic impurities in the zeolite and to perfect the crystalline structure of the zeolite. After treatment, silicalite-I is more selective to alcohol and the desorption of the alcohol from the zeolite is also easier. The silicone rubber membrane filled with treated silicalite-I shows a high performance for alcohol extraction from the dilute aqueous solution by pervaporation. The separation factor of the poly(dimethyl siloxane) (PDMS) membrane filled with silicalite-I treated successively by acid and steam is about 30 when the ethanol content in the feed is 5 wt % at 50°C. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 629–636, 1998  相似文献   

13.
Nonporous homogeneous dense membranes were prepared from the blends of sodium alginate (Na–Alg) with guar gum‐grafted polyacrylamide (GG‐g‐PAAm) in the ratios of 3 : 1 and 1 : 1 and these were tested for the pervaporation separation of water–acetic acid mixtures at 30°C. Blend compatibility was studied in solution by measuring the viscosity and the speed of sound. Membranes were crosslinked by glutaraldehyde. The GG‐g‐PAAm polymer and the crosslinked blend membranes were characterized by Fourier transform infrared spectra. High separation selectivity was exhibited by the pure Na–Alg membrane for water–acetic acid (HAc) mixtures containing 20 mass % of water. The permeation flux increased with increasing mass percent of water in the feed as well as with an increase in the amount of GG‐g‐PAAm in the blend, but separation selectivity decreased. Sorption selectivity was higher for the Na–Alg membrane than for the blend membranes, but it decreased with increasing mass percent of GG‐g‐PAAm in the blends. Diffusion selectivity values vary systematically with the blend composition, but not with the amount of water in the feed. Diffusion coefficients of the water–HAc mixtures were calculated from Fick's equation using sorption data and compared with those calculated from flux values obtained in pervaporation experiments. The Arrhenius activation parameters were calculated for the 20 mass % of water in the feed using flux and diffusion data obtained at 30, 40, and 50°C. The diffusion and pervaporation results are explained in terms of solution–diffusion concepts. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 259–272, 2002  相似文献   

14.
Dense blend membranes were prepared by blending hydrophilic polymers poly(vinyl alcohol) (PVA) and poly(ethyleneimine) (PEI), which were then crosslinked by glutaraldehyde (GA) in a mixture of solvents under the catalysis of hydrochloric acid (HCl) for the dehydration of tetrahydrofuran (THF) by pervaporation. The effect of experimental parameters such as feed water concentration, permeate pressure, and membrane thicknesses on permeate parameters, i.e., flux and selectivity were determined with feed water concentration less than 40 wt %. The membranes were found to have good potential for breaking the azeotrope of 94 wt % THF with a flux of 1.072 and 0.376 kg/m2 h for plane PVA/PEI and crosslinked PVA/PEI blend membrane, which exhibited high selectivity of 156 and 579 respectively. Selectivity was found to improve with decreasing feed water concentration and increasing membrane thickness, whereas flux decreased correspondingly. High permeate pressure causes a reduction in both flux and selectivity. These effects were clearly elucidated with the aid of the known relationship among plasticization effect, degree of swelling, permeate pressure, and feed water concentration. These blend membranes were also subjected to sorption studies to evaluate the extent of interaction and degree of swelling in pure as well as binary feed mixtures. Further ion exchange capacity studies were carried out for all the crosslinked and uncrosslinked membranes to determine the total number of interacting groups present in the membranes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1152–1161, 2006  相似文献   

15.
Incorporation of zeolites into natural polymers has been shown experimentally to enhance both the flux and selectivity in pervaporative dehydration separation of organic compounds. Pervaporation is a promising membrane technique for separation of volatile organic compounds (VOCs)/water mixtures. In this study, hydrophilic sodium alginate (SA) mixed membranes were prepared using solution casting technique by incorporating zeolites into the polymer matrix. The prepared membranes were characterized by ATR‐Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), scanning electron microscopy (SEM), Thermal Gravimetric Analysis (TGA), and differential scanning calorimetry (DSC) were tested in a laboratory scale pervaporation experimental set‐up. The effect of experimental parameters such as the type and composition of zeolites on permeation flux and selectivity was investigated. When tested on IPA‐water mixtures, the zeolite‐filled membrane was found to give much higher selectivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Polyacrylamide‐grafted sodium alginate (PAAm‐g‐Na‐Alg) copolymeric membranes have been prepared, characterized, and used in the pervaporation separation of 10–80 mass % water‐containing tetrahydrofuran mixtures. Totally three membranes were prepared: (1) neat Na‐Alg with 10 mass % of polyethylene glycol (PEG) and 5 mass % of polyvinyl alcohol (PVA), (2) 46 % grafted PAAm‐g‐Na‐Alg membrane containing 10 mass % of PEG and 5 mass % of PVA, and (3) 93 % grafted PAAm‐g‐Na‐Alg membrane containing 10 mass % of PEG and 5 mass % of PVA. Using the transport data, important parameters like permeation flux, selectivity, pervaporation separation index, swelling index, and diffusion coefficient have been calculated at 30°C. Diffusion coefficients were also calculated from sorption gravimetric data of water–tetrahydrofuran mixtures using Fick's equation. Arrhenius activation parameters for the transport processes were calculated for 10 mass % of water in the feed mixture using flux and diffusion data obtained at 30, 35, and 40°C. The separation selectivity of the membranes ranged between 216 and 591. The highest permeation flux of 0.677 kg/m2 h was observed for 93% grafted membrane at 80 mass % of water in the feed mixture. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 272–281, 2002  相似文献   

17.
A novel natural polymer blend membrane, namely chitosan/silk fibroin blend membrane, was prepared. The selective solubility and the pervaporation properties of alcohol–water mixture were studied. The results showed that the membrane was water selective and the separation factor of ethanol–water mixture could be improved compared to pure chitosan membrane, when silk fibroin content in blend membrane was no more than 40 wt %. The blend membrane exhibited a best performance, (i.e., the water in permeate was large than 99 wt % when silk content was 20 wt % and the crosslinking agent–glutaraldehyde content was 0.5 mol %). The mechanism of improvement on pervaporation properties was explained by reducing the free volume and freeing hydrophilic groups of chitosan because of the strong intermolecular hydrogen bond forming between chitosan and silk fibroin in blend membrane. In addition, the influence of operation temperature and feed concentration as well as the pervaporation properties of isopropanol–water mixture were also studied. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 975–980, 1999  相似文献   

18.
Ultrasonics was used to improve the dispersion of NaA zeolite in polyacrylic acid sodium (PAAS) membranes. The effect of ultrasonication time on the dispersion of NaA zeolite in the membranes, the membrane structure, and performance were investigated. The casting solution and resulting membranes were characterized by viscosity measurement, polarizing optical microscopy (POM), scanning electron microscopy, and X‐ray diffraction (XRD). With increasing ultrasonication time, the viscosity of the casting solution decreased as the chain entanglements decreased. The POM and XRD results showed that crystallization occurred in the PAAS membrane after ultrasonic processing. A more homogeneous morphology was obtained due to improvement in the dispersion of zeolite under ultrasonic treatment for 0.5–1.0 h. As a result, the separation performance was enhanced. The water/ethanol separation factor increased from 176.2 to 577.8. However, the relative separation factor decreased when the ultrasonic time exceeded 2.5 h, due to the appearance of a lamellar structure. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3979–3984, 2013  相似文献   

19.
Interpenetrating polymeric network (IPN) membranes of sodium alginate (NaAlg) and various amounts of poly(hydroxyethylmethacrylate) (PHEMA) have been prepared and tested for the pervaporation dehydration of ethanol and tetrahydrofuran (THF). The presence of hydrophilic PHEMA in the IPN matrix was found to be responsible for increase in membrane selectivity to water. NaAlg–PHEMA IPN membrane containing 20 wt % of PHEMA exhibited a selectivity of 571 to water for the water–ethanol mixture and 857 for water–THF mixture. These data are much better than those observed for the pristine NaAlg membrane. However, flux of the IPN membranes was smaller than that of pristine NaAlg membrane. Comparatively higher flux values were observed for water–THF mixture than for water–ethanol mixture. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3324–3329, 2006  相似文献   

20.
Susheelkumar G. Adoor 《Polymer》2007,48(18):5417-5430
Mixed matrix membranes of sodium alginate (NaAlg) and poly(vinyl alcohol) (PVA) containing 5 and 10 wt.% silicalite-1 particles were fabricated by solution casting method and the cured membranes were crosslinked with glutaraldehyde. These membranes were used in pervaporation (PV) dehydration of isopropanol at 30, 40, 50 and 60 °C. Membrane morphology was studied by scanning electron microscopy and universal testing machine to assess their mechanical strengths. Swelling results of the pristine and mixed matrix membranes were correlated with their PV performances. Selectivities of the mixed matrix membranes of NaAlg were 11,241 and 17,991 with the fluxes of 0.039 and 0.027 kg/m2 h, respectively, for 5 and 10 wt.% silicalite-1 loadings. Corresponding values for mixed matrix membranes of PVA were 1295 and 2241, and 0.084 and 0.069 kg/m2 h, respectively, for 10 wt.% water-containing feed at 30 °C. Pristine membranes of NaAlg and PVA exhibited lower selectivities of 653 and 77 with increased fluxes of 0.067 and 0.095 kg/m2 h, respectively. From the temperature dependence of flux and diffusivity data with 10 wt.% water-containing feed, Arrhenius plots were constructed to compute heat of sorption, ΔHs values. Mixed matrix membranes of NaAlg were better than PVA mixed matrix membranes at all compositions (10-40 wt.%) of water. Molecular dynamics (MD) simulation was employed to compute the interfacial interaction energies of NaAlg and PVA polymers with silicalite-1 filler; also sorption of liquid molecules was computed. Simulated diffusivities compared well with the experimental data. Thermodynamic treatment of sorption, diffusion and permeation processes was attempted based on the Flory-Huggins theory to explain the PV performances of the membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号