共查询到20条相似文献,搜索用时 0 毫秒
1.
Xin‐Ping Wang 《应用聚合物科学杂志》2000,77(14):3054-3061
The purpose of this article was to develop new membranes with a high selectivity and permeation rate for separation of an alcohol/water system. Crosslinked alginate composite membranes were prepared by casting an aqueous solution of alginate and 1,6‐hexanediamine (HDM) onto a hydrolyzed microporous polyacrylonitrile (PAN) membrane. The influence of hydrolysis of the support membrane and crosslinking agent content in a dense layer on the selectivity and flux was studied and it was shown that both could improve the separation performance of the composite membrane greatly. The countercation of alginate coatings as a dense separating layer also influenced the separation properties of the membrane, which was better for K+ than for Na+. This novel composite membrane with K+ as a counterion has a high separation factor of 891 and a good permeation rate of 591 g m−2 h−1 for pervaporation of a 90 wt % ethanol aqueous solution at 70°C. At the same time, SEM micrographs showed that the pore structure of the PAN microporous membrane is changed by hydrolysis. The reason for the influence of the preparation conditions on the separation performance of the novel membrane is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3054–3061, 2000 相似文献
2.
A novel natural polymer blend membrane, namely chitosan/silk fibroin blend membrane, was prepared. The selective solubility and the pervaporation properties of alcohol–water mixture were studied. The results showed that the membrane was water selective and the separation factor of ethanol–water mixture could be improved compared to pure chitosan membrane, when silk fibroin content in blend membrane was no more than 40 wt %. The blend membrane exhibited a best performance, (i.e., the water in permeate was large than 99 wt % when silk content was 20 wt % and the crosslinking agent–glutaraldehyde content was 0.5 mol %). The mechanism of improvement on pervaporation properties was explained by reducing the free volume and freeing hydrophilic groups of chitosan because of the strong intermolecular hydrogen bond forming between chitosan and silk fibroin in blend membrane. In addition, the influence of operation temperature and feed concentration as well as the pervaporation properties of isopropanol–water mixture were also studied. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 975–980, 1999 相似文献
3.
The pervaporation behaviors of aqueous ethanol mixtures through the poly(ethylene oxide) (PEO)/chitosan (CS) blend membrane were investigated. The results show that both CS and PEO/CS membrane preferentially permeate ethanol at a lower alcohol concentration in feed, and the selectivity of CS membrane toward alcohol can be greatly improved by introducing hydrophilic polymer PEO into CS. The PEO/CS blend membrane gave a separation factor of 4.4 and a flux of 0.9 kg m−2 h for 8 wt % of ethanol in the feed at 20°C. At the same time, the reason introducing PEO can improve alcohol-permselectivity of CS membrane is explained on the basis of experimental data. Blending with PEO made the structure of CS chain looser, which resulted in ethanol molecules passing through easily, on the other hand, strengthened the ability of forming water clusters that inhibit the permeation of water molecules. From the experimental results, although the PEO/CS blend membrane was not a usable membrane with high selectivity to alcohol, a new method to prepare alcohol-permselective membranes appears to be developed by modifying hydrophilic polymers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1145–1151, 1999 相似文献
4.
The structure and the adsorption–desorption properties of zeolite silicalite-I by different treatments after synthesis were studied. The pervaporation properties of the alcohol–water mixture through silicone rubber filled with zeolite silicalite-I by different treatments were also investigated. Treating silicalite-I by acid or/and under steam was found to eliminate the metallic impurities in the zeolite and to perfect the crystalline structure of the zeolite. After treatment, silicalite-I is more selective to alcohol and the desorption of the alcohol from the zeolite is also easier. The silicone rubber membrane filled with treated silicalite-I shows a high performance for alcohol extraction from the dilute aqueous solution by pervaporation. The separation factor of the poly(dimethyl siloxane) (PDMS) membrane filled with silicalite-I treated successively by acid and steam is about 30 when the ethanol content in the feed is 5 wt % at 50°C. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 629–636, 1998 相似文献
5.
By blending a rigid polymer, sodium alginate (SA), and a flexible polymer, poly(vinyl alcohol) (PVA), SA/PVA blend membranes were prepared for the pervaporation separation of ethanol–water mixtures. The rigid SA membrane showed a serious decline in flux and a increase in separation factor due to the relaxation of polymeric chains, whereas the flexible PVA membrane kept consistent membrane performance during pervaporation. Compared with the nascent SA membrane, all of the blend membranes prepared could have an enhanced membrane mobility by which the relaxation during pervaporation operation could be reduced. From the pervaporation separation of the ethanol–water mixtures along with the temperature range of 50–80°C, the effects of operating temperature and PVA content in membrane were investigated on membrane performance, as well as the extent of the relaxation. The morphology of the blend membrane was observed with PVA content by a scanning electron microscopy. The relaxational phenomena during pervaporation were also elucidated through an analysis on experimental data of membrane performance measured by repeating the operation in the given temperature range. SA/PVA blend membrane with 10 wt % of PVA content was crosslinked with glutaraldehyde to enhance membrane stability in water, and the result of pervaporation separation of an ethanol–water mixture through the membrane was discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:949–959, 1998 相似文献
6.
Dense sodium alginate (SA) membranes crosslinked with glutaraldehyde were prepared by a new solution technique, which had different extents of crosslinking gradient structures. The SA membranes having a crosslinking gradient structure were fabricated by exposing one side of the membrane to the reaction solution while blocking the other side by a polyester film to prevent the reaction solution from contacting it. The extent of the crosslinking gradient was controlled by the exposing time. When the swelling measurements were performed with uniformly crosslinked membranes in aqueous solutions of 70–90 wt % ethanol contents, it was observed that the crosslinking could reduce both the solubility of water in the membrane and the permselectivity of the membrane toward water. The pervaporation separation of the ethanol–water mixture of 90 wt % ethanol content was carried out with membranes with different extents of crosslinking gradients. As the crosslinking gradient was developed more across the membrane, the resulting flux as well as the separation factor to water was found to decrease while the membrane became stable against water. The pervaporation performances of the membranes with different membrane loadings in a membrane cell were also discussed using the schematic concentration and activity profiles of the permeant developed in them. The pervaporation separations of the ethanol/water mixtures through the membrane with an optimal crosslinking gradient were performed at different feed compositions and temperatures ranging from 40 to 80°C. The change in the membrane performance due to the relaxation process during pervaporation was observed with the operating temperature and feed composition. The relaxational phenomena were also elucidated through an analysis of the experimental data of the membrane performance measured by repeating the operation in a given temperature range. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1607–1619, 1998 相似文献
7.
Udaya S. Toti Mahadevappa Y. Kariduraganavar Kumaresh S. Soppimath Tejraj M. Aminabhavi 《应用聚合物科学杂志》2002,83(2):259-272
Nonporous homogeneous dense membranes were prepared from the blends of sodium alginate (Na–Alg) with guar gum‐grafted polyacrylamide (GG‐g‐PAAm) in the ratios of 3 : 1 and 1 : 1 and these were tested for the pervaporation separation of water–acetic acid mixtures at 30°C. Blend compatibility was studied in solution by measuring the viscosity and the speed of sound. Membranes were crosslinked by glutaraldehyde. The GG‐g‐PAAm polymer and the crosslinked blend membranes were characterized by Fourier transform infrared spectra. High separation selectivity was exhibited by the pure Na–Alg membrane for water–acetic acid (HAc) mixtures containing 20 mass % of water. The permeation flux increased with increasing mass percent of water in the feed as well as with an increase in the amount of GG‐g‐PAAm in the blend, but separation selectivity decreased. Sorption selectivity was higher for the Na–Alg membrane than for the blend membranes, but it decreased with increasing mass percent of GG‐g‐PAAm in the blends. Diffusion selectivity values vary systematically with the blend composition, but not with the amount of water in the feed. Diffusion coefficients of the water–HAc mixtures were calculated from Fick's equation using sorption data and compared with those calculated from flux values obtained in pervaporation experiments. The Arrhenius activation parameters were calculated for the 20 mass % of water in the feed using flux and diffusion data obtained at 30, 40, and 50°C. The diffusion and pervaporation results are explained in terms of solution–diffusion concepts. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 259–272, 2002 相似文献
8.
A series of polyion complex (PIC) composite membranes composed of sodium alginate (SA) polyanion and chitosan polycation were prepared by varying the ratio of concentration. The interaction between SA and chitosan was investigated by FTIR, SEM, and X‐ray analysis and was related to mechanical properties and the swelling phenomenon. The overall PIC composite membranes showed the following results: the total thickness of the coating layer was thicker than that of pure SA composite, and increased with increasing the concentration of chitosan solution during PIC formation. This result was attributed to the diffusion of chitosan molecules from the liquid solution into the SA matrix, and the incorporation with SA molecules. For the PIC membranes prepared with different concentrations of polymer solution, their structural differences could not be detected from IR spectra but their morphological differences could be noticeably found from SEM. Furthermore, the amorphousness of PIC membranes and their elongation properties at break increased significantly as a function of polymer contents, whereas the tensile modulus decreased because of the physical transition effect. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 714–725, 2002 相似文献
9.
Dense sodium alginate (SA) membranes crosslinked with glutaraldehyde (GA) have been prepared by the solution method, wherein a nonsolvent of SA (acetone) was used in a reaction solution instead of an aqueous salt solution. Through infrared radation, X-ray diffractometry, and the swelling measurement, the crosslinking reaction between the hydroxyl groups of SA and the aldehyde groups of GA was characterized. To investigate the selective sorption behavior of the crosslinked SA membranes, swelling measurements of the membranes in ethanol-water mixtures of 70–90 wt % ethanol contents were conducted by equipment that was able to measure precisely the concentration and amount of the liquid absorbed in the membranes. It was observed that the crosslinking could reduce both the solubility of water in the resulting membrane and the permselectivity of the membrane toward water at the expense of membrane stability against water. The pervaporation separation of a ethanol-water mixture was conducted with the membranes prepared at different GA contents in the reaction solution. When the membrane was prepared at a higher GA content, both flux and separation factor to water were found to be reduced, thus resulting from the more crosslinking structure in it. The pervaporation separations of ethanol-water mixtures were also performed at different feed compositions and temperatures ranging from 40 to 80°C. A decline in the pervaporative performance was observed due to the relaxation of polymeric chains taking place during pervaporation, depending on operating temperature and feed composition. The relaxational phenomena were also elucidated through an analysis on experimental data of the membrane performance measured by repeating the operation in the given temperature range. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 209–219, 1998 相似文献
10.
Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation 总被引:4,自引:0,他引:4
P. Kanti K. Srigowri J. Madhuri B. Smitha S. Sridhar 《Separation and Purification Technology》2004,40(3):259-266
Polyion complex membranes made by blending 84% deacetylated chitosan and sodium alginate biopolymers followed by crosslinking with glutaraldehyde were tested for the separation of ethanol–water mixtures. The membranes were characterized by FTIR to verify the formation of the polyion complex, X-ray diffraction (XRD) to observe the effects of blending on crystallinity, DSC, and TGA to investigate the thermal stability, and tensile testing to assess their mechanical stability. The effect of experimental parameters such as feed composition, membrane thickness and permeate pressure on separation performance of the crosslinked membranes was determined. Sorption studies were carried out to evaluate the extent of interaction and degree of swelling of the blend membranes, in pure as well as mixtures of the two liquids. Crosslinked blend membranes were found to have good potential for breaking the azeotrope of 0.135 mol fraction of water and a high selectivity of 436 was observed at a reasonable flux of 0.22 kg/(m2 10 μm h). Membrane selectivities were found to improve with decreasing membrane pressure but remained relatively constant for variable membrane thickness. Increasing membrane thickness decreased the flux and higher permeate pressure caused a reduction in both flux and selectivity. 相似文献
11.
T. M. Aminabhavi M. B. Patil S. D. Bhat A. B. Halgeri R. P. Vijayalakshmi P. Kumar 《应用聚合物科学杂志》2009,113(2):966-975
Composite membranes of sodium alginate prepared by incorporating nanosized‐activated charcoal particles were prepared and characterized for the extent of cross‐linking, thermal stability, and mechanical strength properties using Fourier transform infrared, differential scanning calorimetry, and universal testing machine, respectively. The membranes were tested for pervaporation (PV) dehydration of isopropanol (IPA), ethanol (EtOH), 1,4‐dioxane (1,4‐D), and tetrahydrofuran (THF) at their azeotropic compositions. Improved PV performances of the composite membranes were observed compared with plain sodium alginate membrane for all the azeotropes. Sorption was studied to evaluate the extent of interactions between liquids and membranes as well as degree of swelling of the membranes in the chosen aqueous‐organic mixtures. Adding different amounts of activated charcoal into NaAlg offered high water selectivity values of 99.7, 99.1, 99.4, and 99.41%, respectively, for IPA, THF, 1,4‐D, and EtOH. Arrhenius activation parameters were computed from the temperature versus flux plots, which showed systematic trends for different liquids that depended upon their interactions with membranes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
12.
The blend membranes of sodium alginate (Na‐Alg) and poly(acrylamide)‐grafted guar gum (PAAm‐g‐GG) in the ratios of 3:1 and 1:1 were prepared and studied for the pervaporation separation of water–isopropyl alcohol mixtures over the entire range of mixture composition at 30°C. Membranes prepared from neat Na‐Alg (M‐1) and the 1:1 blend of Na‐Alg and PAAm‐g‐GG (M‐3) showed the highest separation selectivity for 10 mass % water in the feed mixture, whereas membranes prepared with the 3:1 blend ratio of Na‐Alg to PAAm‐g‐GG showed the highest separation selectivity of 20 mass % water in the feed. Selectivity decreased with increasing amount of water in the feed for all the membranes, but these values show an increase with increasing amount of grafted copolymer in the blend mixture. Flux increased with increasing amount of water in the mixture, but the flux values did not change markedly with the PAAm‐g‐GG content in the blend membrane at the lower mass % water. At higher mass % of water, the flux values of the blends increase systematically with increasing amount of PAAm‐g‐GG in the blend polymer. For the 10 mass %‐containing binary mixtures, the pervaporation separation experiments were performed at 30, 40, and 50°C, and the resulting data were used to calculate the Arrhenius activation parameters. These data indicated activated pore‐type diffusion of the permeants in the membranes. Dynamic sorption studies were also performed on up to 40 mass % water–isopropyl alcohol mixtures at 30°C. These results, when analyzed by the empirical equation, indicated Fickian transport in all the cases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2014–2024, 2002 相似文献
13.
H. Sudhakar C. Venkata Prasad K. Sunitha K. Chowdoji Rao M. C. S. Subha S. Sridhar 《应用聚合物科学杂志》2011,121(5):2717-2725
Incorporation of zeolites into natural polymers has been shown experimentally to enhance both the flux and selectivity in pervaporative dehydration separation of organic compounds. Pervaporation is a promising membrane technique for separation of volatile organic compounds (VOCs)/water mixtures. In this study, hydrophilic sodium alginate (SA) mixed membranes were prepared using solution casting technique by incorporating zeolites into the polymer matrix. The prepared membranes were characterized by ATR‐Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), scanning electron microscopy (SEM), Thermal Gravimetric Analysis (TGA), and differential scanning calorimetry (DSC) were tested in a laboratory scale pervaporation experimental set‐up. The effect of experimental parameters such as the type and composition of zeolites on permeation flux and selectivity was investigated. When tested on IPA‐water mixtures, the zeolite‐filled membrane was found to give much higher selectivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
14.
Dense blend membranes were prepared by blending hydrophilic polymers poly(vinyl alcohol) (PVA) and poly(ethyleneimine) (PEI), which were then crosslinked by glutaraldehyde (GA) in a mixture of solvents under the catalysis of hydrochloric acid (HCl) for the dehydration of tetrahydrofuran (THF) by pervaporation. The effect of experimental parameters such as feed water concentration, permeate pressure, and membrane thicknesses on permeate parameters, i.e., flux and selectivity were determined with feed water concentration less than 40 wt %. The membranes were found to have good potential for breaking the azeotrope of 94 wt % THF with a flux of 1.072 and 0.376 kg/m2 h for plane PVA/PEI and crosslinked PVA/PEI blend membrane, which exhibited high selectivity of 156 and 579 respectively. Selectivity was found to improve with decreasing feed water concentration and increasing membrane thickness, whereas flux decreased correspondingly. High permeate pressure causes a reduction in both flux and selectivity. These effects were clearly elucidated with the aid of the known relationship among plasticization effect, degree of swelling, permeate pressure, and feed water concentration. These blend membranes were also subjected to sorption studies to evaluate the extent of interaction and degree of swelling in pure as well as binary feed mixtures. Further ion exchange capacity studies were carried out for all the crosslinked and uncrosslinked membranes to determine the total number of interacting groups present in the membranes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1152–1161, 2006 相似文献
15.
16.
Mukund G. Mali Veeresh T. Magalad Gavisiddappa S. Gokavi Tejraj M. Aminabhavi K. V. S. N. Raju 《应用聚合物科学杂志》2011,121(2):711-719
Mixed matrix membranes of poly(vinyl alcohol) and poly(vinyl pyrrilidone) blends were prepared by loading with phosphomolybdic acid (PMA) and their pervaporation (PV) properties were investigated for the PV separation of isopropanol. Membrane performance shown a dependence on the extent of PMA loading. The 4 wt % PMA‐loaded blend membrane had the highest separation factor of 29991, which declined considerably at higher loading. The flux of 4 wt % PMA‐loaded membrane was lower than that of nascent blend membrane. Feed water composition and temperature influenced the PV performance. Solubility selectivity was higher than diffusion selectivity. Degree of swelling was smaller after PMA loading exhibiting better separation ability. The PV results were analyzed using the Flory‐Huggins theory and sorption was dominated by Langmuir's mode. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
17.
M. E. T. Alvarez E. B. Moraes W. A. Araujo R. Maciel Filho M. R. Wolf‐Maciel 《应用聚合物科学杂志》2008,107(4):2256-2265
An essentially predictive mathematical model was developed to simulate pervaporation process. The group contribution method UNIFAC was used for calculating the upstream activity coefficients. The diffusion coefficient in the membrane was predicted using free‐volume theory. Free‐volume parameters were determined with viscosity and temperature data, and the binary interaction solvent–polymer parameter was calculated by a group‐contribution lattice‐fluid equation of state (GCLF‐EOS). A simulator named PERVAP was developed applying the mathematical model. Pervaporation process was simulated for separating bioethanol–water through polyetherimide membrane. The simulated results were validated using experimental data of bioethanol/water separation through polyetherimide membrane. The model presented a satisfactory performance compared to experimental data. Related to the simulation of the studied separation, a 99% molar enriched bioethanol stream was obtained with a recovery of 94%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
18.
Following the non‐equilibrium thermodynamics formulation and taking into account the complexities in the structure of aqueous associating mixtures, expressions are proposed to estimate the thermodiffusion coefficients in ternary associating mixtures, such as water and alcohol mixtures. The model expressions are used to estimate the thermodiffusion coefficients in methanol–ethanol–water, dimethyl sulfoxide (DMSO)–ethanol–water and DMSO–t‐butanol–water mixtures at various concentrations. The perturbed‐chain statistical associating fluid theory (PC‐SAFT) equation of state is used to obtain the mixture properties, such as the derivatives of the chemical potentials needed to evaluate the thermodiffusion coefficient expressions. The results show that at certain concentrations of one component, variation of the concentration of the other two components can cause a sign change in the thermodiffusion coefficients. While the model cannot be evaluated due to the lack of any pertinent experimental data, the model predictions may be used to choose suitable mixture compositions in space experiments to be performed onboard the International Space Station (ISS) in near future. © 2011 Canadian Society for Chemical Engineering 相似文献
19.
通过硅烷偶联剂对海藻酸钠-明胶共混膜进行交联改性制备乙酸脱水渗透蒸发杂化膜。实验结果表明:随着偶联剂含量的增加,杂化膜的对水的选择性先增加后下降,在3 wt%时有最好的选择性,同时膜的渗透通量随着偶联剂含量增加而增大;膜的选择性随着进料乙酸浓度增大而增大,通量随着进料乙酸浓度增大而减少。 相似文献
20.
藻朊酸钠渗透汽化膜分离有机液/水混合物 总被引:1,自引:0,他引:1
研究了藻朊酸钠均质膜及藻朊酸钠/酸丙烯腈复合膜的渗透汽化特性。发现它们对甲醇、乙醇、异丙醇、丙酮、四氢呋喃(THF)、二氧六环、丙三醇等有机溶剂与水的混合望远镜水优选 透过,其渗透通量与选择分离系数都非常高。复合膜与均质膜相比,通量成倍增加,除甲醇/水体系外,对其他体系的分离系数不大,对二氧六环/水体系的分离系数复合膜更高。三种藻朊酸钠样品对乙醇/水,二氧六环/水的透过分离性能有所差异,对此,从膜 相似文献