首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steady and dynamic shear rheological properties of hydroxypropylated rice starch pastes (5%, w/w) were evaluated at different molar substitution (MS, 0.030‐0.142). The swelling power (35.5‐52.8 g/g) and solubility (8.19‐10.7%) values of the hydroxyproylated rice starches were higher than those of native rice starch (26.6 g/g and 7.78%) and increased with an increase in MS. The hydroxypropylated starch pastes at 25°C showed a pronounced shear‐thinning behavior (n = 0.33‐0.40) with Casson yield stress (σoc = 15.9‐31.7 Pa). The consistency index (K) and yield stress (σoc) values of the hydroxypropylated starch pastes were lower than those of the native starch, and increased progressively with an increase in MS. The apparent viscosity (ηa,500) obeyed the Arrhenius temperature relationship over the temperature range of 10‐55°C; the activation energies (Ea) of the hydroxypropylated starch pastes were in the range of 14.8‐18.5 kJ/mol, i.e. higher than that (14.1 kJ/mol) of the native starch. Storage (G′) and loss moduli (G′′) of hydroxypropylated starch pastes increased with an increase in MS, while tan δ (G′′/G′) values decreased, indicating that G′ rose more strongly than G′′ with increased MS.  相似文献   

2.
The effects of different cooking conditions and concentrations on the freeze-thaw stability of hydroxypropyl potato starch (molar substitution 0·125) paste were investigated by dynamic rheological measurements and syneresis determination. The cooking conditions of the starch were chosen by taking the starch pastes at peak consistency (SP/Peak), at half breakdown consistency (SP/HB), after being held at 95°C for 15 min (SP/95°C) and after the whole pasting cycle (SP/25°C) in the Brabender Amylograph. The concentration effect was studied with the starch pastes after a whole pasting cycle at 35, 50 and 65 g kg?1. Depending on cooking conditions and concentration, the rheological responses in changes of complex modulus (G*) and phase angle () of the starch pastes, with regard to the number of freeze-thaw cycles, differed considerably. This indicated that the starch pastes had undergone various structural changes during freeze-thaw treatments. With an increased extent of pasting, and with an increased starch concentration, the rheological responses indicative of the destabilisation process of the starch pastes were, in general, delayed. The number of freeze-thaw cycles required for the appearance of a peak in G*, related to the first syneresis, was one, two, five and six for SP/Peak, SP/HB, SP/95°C and SP/25°C, respectively. For the starch pastes at 35, 50 and 65 g kg?1, it was four, six and seven cycles, respectively. Based on these rheological data, it was suggested that the amount of inter-mingled amylose and amylopectin in the dispersion of hydroxypropyl starch paste is the main controlling factor, which plays a critical role in the rheological response as well as in the syneresis.  相似文献   

3.
The digestibility of native and hydroxypropyl rice starches in the presence of calcium was investigated. Calcium interacted with native and hydroxypropyl rice starches and altered their relative crystallinity. Hydroxypropylation was measured in terms of molar substitution (MS) which in turn enhanced calcium binding. Depending upon the amount of calcium added (50–250 μg calcium per g dry starch) and levels of MS (ranging from 0·02 to 0·12), 25·4– 34·1 μg calcium was bound per g of hydroxypropyl starch. Native starch bound 25·4 μg calcium per g dry starch, which was much less than the hydroxy-propylated starches. Crystallinity decreased with the increase of MS and calcium concentration. Digestibility of ungelatinised hydroxypropyl starches increased with MS (2·5–4·1 mg reducing sugar released per g dry starch) and the trend is reversed in the gelatinised form. Calcium-induced amylolysis of the starches by porcine pancreatic α-amylase but somehow inhibited amyloglucosidase attack. © 1998 SCI.  相似文献   

4.
对天然玉米淀粉和五种化学改性玉米淀粉的糖化性质进行了比较。改性玉米淀粉包括下列五种,磷酸淀粉,交联磷酸淀粉,醋酸淀粉A,醋酸淀粉B和羟丙基淀粉。使用差热扫描量热计测定了糊化的热力学参数,同时用显微镜观察了糊化过程。研究表明,五种改性玉米淀粉的糊化热都比天然的玉米淀粉小,测量冷的淀粉糊的流动性质表明只有羟丙基玉米淀粉比天然玉米淀粉的帖度高。  相似文献   

5.
《Food chemistry》1999,64(3):361-375
Recent studies have shown that defatting and heat-moisture treatment cause structural changes within the amorphous and crystalline regions of potato starch. Furthermore, the alkaline reagents (NaOH and Na2SO4) used during hydroxypropylation has been shown to cause structural changes within the amorphous and crystalline regions of native, defatted and heat-moisture treated starches. In this study, we have compared (using different techniques) the retrogradation properties of potato starch before and after physical (defatting and heat-moisture treatment), and chemical (alkaline treatment and hydroxypropylation) modification. Turbidity measurements showed that changes in turbidity during storage (4°C for 24 h and then at 40°C for 29 days) of native, defatted and heat-moisture treated gelatinized starch pastes were influenced by the interplay of two factors: (1) interaction between leached starch components (amylose–amylose, amylose–amylopectin, amylose–amylopectin), and (2) interaction between granule remnants and leached amylose and amylopectin. In alkali treated gelatinized native, defatted and heat-moisture treated starch pastes, turbidity changes on storage was influenced by aggregation of granule remnants. Hydroxypropylation decreased the rate and extent of increase in turbidity during storage of native, defatted and heat-moisture treated starches. The change in turbidity during storage of hydroxypropylated starch pastes was influenced by the interplay between: (1) steric effects imposed by hydroxypropyl groups on chain aggregation, (2) aggregation between small granule remnants, and (3) settling of large granule remnants beneath the path of the spectrophotometer beam. Stored gelatinized pastes of native, defatted and heat-moisture treated starches gave a `B' type X-ray pattern. A similar pattern was also observed after alkaline treatment, and hydroxypropylation. However, the X-ray intensity of the strong reflection at 5.2 Å decreased after alkaline treatment and hydroxypropylation. The retrogradation endotherm (monitored by differential scanning calorimetry) occurred after 2 days storage in native, defatted and heat-moisture treated starches. A similar trend was also observed after alkaline treatment. However, the retrogradation endotherm appeared only after 7 days in hydroxypropylated starches. The enthalpy of retrogradation in all starches decreased on alkaline treatment and hydroxypropylation.  相似文献   

6.
Starch isolated from white yam (Dioscorea rotundata) was subjected to hydroxypropylation under different conditions. Corresponding increases were observed between the molar substitution (MS) and the volume of propylene oxide added to the reaction mixture. After hydroxypropylation, a slight reduction in the intensity of the peak at 2θ = 19.6° was observed and the doublet peak at 23.8°, which was present in native starch, was no longer seen. Hydroxypropylation enhanced the free swelling capacity (FSC) and solubility. Setback and retrogradation of native starch declined after hydroxypropylation. Turbidity of native starch paste and syneresis were higher with storage time. The results also indicate that enzymatic digestibility improved as the MS increased, while the reverse was observed for starch paste turbidity, syneresis, setback and retrogradation. This study presents relevant information that could strategically position D. rotundata starch and its hydroxypropylated derivatives for industrial applications.  相似文献   

7.
Cassava starch was cross‐linked with epichlorohydrin (EPI) at 45°C for 2 h in three different media which include water, water in the presence of a phase transfer catalyst (PTC) and N,N‐dimethylformamide (DMF). The products were characterized by determining their physicochemical, thermal and retrogradation properties. In aqueous medium, the use of a PTC, tetrabutylammonium bromide (TBAB) produced derivatives with higher degree of cross‐linking than those prepared without the use of the catalyst. The degree of cross‐linking was found to be higher using the same concentration of EPI when the reaction was carried out in DMF. At low levels of cross‐linking, the peak viscosity of the cross‐linked starches increased in comparison to that of the native starch. With increasing degree of cross‐linking, the peak viscosity showed a significant reduction. The swelling volume, solubility and light transmittance of the starch pastes were lower for the modified starches. The cross‐linked starches showed slightly reduced values for the gelatinization temperatures, Tonset, Tpeak and Tend. The enthalpy of gelatinization of the modified starches increased with increase in the degree of cross‐linking. The modified starches exhibited higher water‐binding capacities (WBC) than the native starch; but with increase in the degree of cross‐linking, there was a gradual decrease in WBC. The in vitro alpha amylase digestibility of the modified starches decreased gradually with increase in the level of cross‐linking.  相似文献   

8.
The flow behaviour characteristics of native, hydroxypropyl starches and their calcium complexes were determined at different levels of starch concentrations, temperatures and shear rates. Hydroxypropyl starch with different Molar Substitution (MS = 0.02–0.12) were used. Both native and hydroxypropyl starch were treated with varying amount of calcium (50–250 μg/g starch). Flow properties were affected due to hydroxypropylation and their calcium treatment. The flow properties were evaluated by power law equation.  相似文献   

9.
Olayide S. Lawal 《LWT》2011,44(3):771-778
Hydroxypropyl starch derivatives were prepared from pigeon pea starch (NPPS) which is an unconventional starch source. Functional parameters and characterization of both native and modified starches were carried out. The starch granules appeared oval or elliptical in shape with sizes ranging from 7 to 40 μm in width and 10 − 30 μm in length. Hydroxypropylation did not alter the shape of the starch granules in a pronounced way. Generally, the x-ray diffractograms of native pigeon pea starch showed the “A” pattern. However, slight reductions in the diffraction intensity of starches after modification were observed. At all temperatures studied (30-90 °C), swelling and solubility of hydroxypropylated starches were higher than the NPPS. Progressive increases in swelling capacity and solubility were observed as the molar substitution (MS) increased among the hydroxypropylated starches. Hydroxypropylation reduced starch paste turbidity on storage. Also, studies showed that syneresis reduced after hydroxypropylation. In addition, syneresis reduced as the MS of the hydroxypropyl starches increased. The results indicate that pasting temperature and peak temperature reduced after modification but peak viscosity increased in hydroxypropylated starch derivatives compared with the native starch. Setback reduced in hydroxypropylated starches compared with the native starch. Enthalpy of gelatinization and percentage retrogradation reduced after hydroxypropylation and progressive reductions were observed as the MS increased among the starch derivatives. Hydroxypropylation increased enzymatic digestibility.  相似文献   

10.
Stepwise Elution Analysis of Thermically Dispersed Starches. Qualitative changes of kernels of sorghum, wheat, maize and potato starch and decomposition of their pastes during thermic dispersing at 120°C were observed by elution analysis. After thermic dispersing potato and sorghum starch were the most decomposed. The chromatograms of their pastes showed after thermic dispersing in water at smaller concentrations of perchloric acid new zones of the iodine starch complex. Due to the molecular decomposition the intensity of the coloured zones decreased in the lower and middle part of the chromatogram, while new zones with increased colour intensity appear in the upper parts. The chromatograms of all native starches showed more coloured zones than their pastes. This is in good correlation with previous determinations where all investigated native starches showed smaller average molecular weights than their corresponding pastes.  相似文献   

11.
Porcine pancreatic α-amylase digests of native and hydroxypropyl derivatives of maize, waxy maize and high amylose maize starches were subjected to ethanolic fractionation into oligosaccharide and polysaccharide fractions. Both fractions of the partial digests were analysed for blue values, reducing values, total carbohydrate, average degree of polymerisation and molar substitution (MS). Distribution of hydroxypropyl groups between the fractions varied depending on starch type and level of substitution with the polysaccharide fraction being higher in MS. Blue values (BV) and average degree of polymerisation (DP) tended to decrease with digestion while reducing (RV) increased.  相似文献   

12.
The effects of molar substitution (M.S.) and cross-linking on the freeze-thaw stability of hydroxypropyl potato starch pastes were studied by following the changes in the rheological behaviour during heat treatment of the thawed starch pastes, and by determination of syneresis. In addition, differential scanning calorimetry (DSC) was used to investigate the thermal transition properties of the starch pastes that exhibited syneresis. With increasing M.S., the changes in both complex modulus (G*) and phase angle (δ) indicative of destabilization, and starch paste syneresis were delayed with regard to the number of freeze-thaw cycles. When a starch paste showed a peak in G*, related to syneresis, it also showed a thermal transition peak in the DSC measurements. The enthalpy value decreased with increasing M.S., and it appeared to be related to the extent of syneresis and the magnitude of the peak in G*. Comparison of the rheological behaviour of hydroxypropyl potato starch pastes and hydroxypropyl and cross-linked potato starch pastes, suggested that the former were gradually transformed into coarsely aggregated structures while the latter became diluted starch dispersions, due to shrinkage of swollen starch granules and their disruption.  相似文献   

13.
Porcine pancreatic α-amylase digests of native and hydroxypropyl derivatives of maize (NM), waxy maize (WM) and high amylose maize starches (HA) were subjected to ethanolic fractionation into oligosaccharide and polysaccharide fractions. Both fractions of the partial digests were analysed for blue values, reducing values, total carbohydrates, average degree of polymerisation and molar substitution (MS). Distribution of hydroxypropyl groups between the fractions varied depending on starch type and level of substitution with the polysaccharide fraction being higher in MS. Blue values (BV) and average degree of polymerisation (DP) tended to decrease with digestion while reducing values (RV) increased.  相似文献   

14.
Contribution on Waxy Maize Starch and High Amylose Starch Modified under the Influence of Temperature. The starches of the two genetic varieties of the corn grain, waxy maize starch and high amylose starch, were subjected to the influence of different temperatures. Subsequently, the physico-chemical properties of the modified starches were examined. Waxy maize starch which mainly consists of amylopectin, and high amylose starch which contains a high portion of linear chains of polymerized glucose units are interesting test materials because of their properties which are different by nature. Waxy maize starch with its high viscosity values, great swelling power and good solubility in hot water shows no tendency to settle or retrograde. While the process of freezing the starch granules hardly changes the properties mentioned, the influence of a temperature of 100°C causes morphological changes of a small proportion of grains, including the loss of birefringence. These changes are particularly pronounced after treatment of native starch at 120°C. The properties of the starch pastes were also strongly changed. The native high amylose starch characterized by unusual, oblong starch granules without birefringence, a low viscosity, low swelling power and low solubility showed only minor changes after freezing, whereas a temperature of 100°C resulted in reduced values of solubility and aggregation of the starch granules. A temperature treatment at 120°C and at 125°C brought about changes in the swelling properties, the viscosity and limiting viscosity, settling, swelling power, and solubility of the starch pastes. Attempts were made to conform the changes in the different properties observed with the expected influence of temperature treatment on the intermolecular forces (hydrogen bonds, crossbonding).  相似文献   

15.
The effects of hydroxypropylation (molar substitution, MS 0.05, 0.12, and 0.18) and cross‐linking (0.03%, 0.1%, and 0.2%) on swelling properties of wheat starch granules at several temperatures and heating times were investigated by laser diffraction particle size analysis. Starch samples were dispersed in water at temperatures ranging from 30 to 90°C, for 1 to 360 min. All starch granules exhibited distinct bimodal size distributions: small B‐granules with mean diameter of 2.3 μm and large A‐granules with mean diameter of 20.4 μm. As temperature increased, the B‐granules swelled more than A‐granules. Swelling of A‐granules sharply increased at 60°C. Swelling was more pronounced with increasing molar substitution of hydroxypropyl groups, while increased swelling was not observed in cross‐linked starches. The dependence of swelling capacity on heating time was different at 60 and 80°C as well as amongst modified starches. As heating time was prolonged, mean granule sizes for native, control, and hydroxypropylated starches at 80°C decreased after reaching maximum size due to loss of granule integrity, while those at 60°C showed no significant change.  相似文献   

16.
Gelatinization and solubility characteristics of starch contribute to unique functionality in foods. Corn and oat starch viscoamylographs (35g db) showed peak viscosities of 400 and 390B.U., respectively. Oat starch had a more rapid (89.7 vs 85.6°C) and higher set back (790 vs. 740B.U.) than corn. Data on soluble components of cooled (85°C) starch pastes, as collected and analyzed by high-performance size exclusion chromatography (HPSEC), suggest that amylopectin plays a significant (P<0.05) role in oat paste set back; for corn starch, amylose is the dominant factor. Solubilities and apparent molecular weights (MW) of oat starch heated (65-120°C) under shear and subsequent sonication (0-40s) in water or 90% methyl sulfoxide (DMSO) were also determined by HPSEC. An intermediate MW fraction was eluted on the HPSEC chromatograms only when oat starch was heated in water (100-120°C/30min) or DMSO and sonicated, suggesting that this fraction may not be inherent in the native granule. in water, polymer solubility and peak MW increased with temperature (65-120°C), whereas in DMSO, solubility decreased with heating (65-100°C), while peak MW remained basically constant. Aqueous (aq) leaching at 75°C solubilized more corn amylose than amylopectin, but amylopectin and amylose co-leached from oat starch granules. Aq leaching, at 20°C above their DSC peak ends (85 and 95°C for oat and corn, resepctively), showed more amylopectin leached from oat starch granules whereas more amylose was leached from corn starch granules.  相似文献   

17.
Modified yam starch and dual-modified yam starch were produced with propylene oxide, sodium trimetaphosphate and sodium tripolyphosphate. Gelatinization temperature and final viscosity of native yam starch were 79.2 ± 0.4°C and 5702 ± 3 cP. Results showed that the molar substitution and degree of substitution were increased with the volume fraction of propylene oxide from 6–12%, the highest of molar substitution and degree of substitution were 0.0445 ± 0.0003 and 0.0065 ± 0.0006, the final viscosity and setback of dual-modified yam starch were also similar. However, the gelatinization parameters showed an inverse trend. Starch modified with a mixture of sodium trimetaphosphate and sodium tripolyphosphate had higher phosphorus content and increased viscosity compared to starch modified with sodium trimetaphosphate. The peak viscosity of starch modified with propylene oxide was higher than that of native yam starch and the highest was HP12. The granular surface of modified yam starch and dual-modified yam starch appeared significantly embossed and indented, while. Modified yam starch film treated with 12% propylene oxide showed a more homogeneous fractured surface. The tensile strength and elongation at break (E) of starch films were affected by crosslinking reagents and propylene oxide, respectively. The best transparence and E were demonstrated in starch film that was modified with 12% propylene oxide. However, the best tensile strength was demonstrated in starch film that was modified with 8% propylene oxide, sodium trimetaphosphate, and sodium tripolyphosphate. The final viscosity of HP6C1 and HP6C2 was 27 ± 7 and 45 ± 9 cP, which was too low to form film.  相似文献   

18.
Maize starches with different amylose contents (0%, 23% and 55%) were treated in anhydrous methanol, ethanol, 2‐propanol, 1‐butanol with 0.36% HCl at 25 °C for 5 days. Results showed that the extent of change in physicochemical properties increased from methanol to butanol. Treated waxy maize starch showed higher than 65% solubility at above 75 °C. The diffraction peak at 2θ = 5.3° of amylomaize V starch disappeared after treatment in ethanol, 2‐propanol and 1‐butanol. Acid–alcohol treatment decreased the gelatinisation temperature of normal (from 64.5 to 61.9 °C) and waxy maize (from 68.1 to 61.1 °C) starches, while it increased that of amylomaize V (from 68.7 to 72.3 °C) starch. The extent of the decrease in the pasting viscosity followed the following order: amylomaize V < normal maize < waxy maize. This study indicated that acid–alcohol treatment degraded preferentially the amorphous regions and the different changes depended on the crystal structure and amylose content of starch.  相似文献   

19.
The aim of the study was to define the influence of selected nonstarch polysaccharides (guar gum, xanthan gum and arabic gum) on several rheological properties of triticale starch pastes/gels, at constant polysaccharide concentration (6.5 g/100 g). These included pasting characteristics, flow curves at 50 °C and mechanical spectra at 25 °C. It was found that the presence of a gum in a system modified the rheological properties of triticale starch gels/pastes, depending on the type and concentration of the gums. In the case of guar and xanthan gums, higher pasting viscosity was observed and the shear stress was increased compared with native starch. The presence of guar gum reduced the degree of thixotropy hysteresis, negative values for this being found for systems with xanthan in spite of their shear‐thinning behaviour. Systems containing arabic gum displayed lower values of pasting and flow viscosity. The type and concentration of gums added to the polysaccharide influenced the viscoelastic properties of the gels.  相似文献   

20.
Preparation and physicochemical properties of modified jackfruit starches   总被引:4,自引:0,他引:4  
Modifications of jackfruit starch, extracted from the cotyledons of Artocarpus heterophyllus Lam. (Thong Prasert cultivar), were carried out to obtain a pregelatinized starch, three (m-, n- and i-) carboxymethyl starches, a hydroxypropyl starch and a phosphate cross-linked starch. Physicochemical properties of native and modified jackfruit starches were comparatively investigated. Pregelatinized, hydroxypropyl, and cross-linked starches were insoluble or partially soluble in water at room temperature, while carboxymethyl starches were soluble with good overall water uptake. Scanning electron microscopic images revealed that granules of most modified jackfruit starches retained the native appearance and crystal structure, with the exception of pregelatinized starch and two (n- and i-) carboxymethyl starches, which showed significant breakage of granules. X-ray diffraction patterns corroborated to suggest the loss of crystallinity in these modified starches. Thermal analysis showed a significant decrease in the gelatinization temperature of hydroxypropyl starch with no change in enthalpy, while higher gelatinization temperature and less enthalpic value were observed for pregelatinized starch. Pregelatinized and hydroxypropyl starches showed temperature-dependent improvement on swelling and solubility, while cross-linked starch exhibited less solubility. Aqueous solution of m-carboxymethyl starch yielded the highest apparent viscosity with improved heating-cooling stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号