首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Das Fließstreifenmodell ist ein verbreitetes Hilfsmittel zur Berechnung der zyklischen Rissspitzenöffnungsverschiebung und des Ermüdungsrisswachstums von Strukturen unter isothermer zyklischer Belastung. Im Zuge einer Modellerweiterung kommt das rheologische Masing‐Modell zum Einsatz, das aus parallel geschalteten Reihenschaltungen von Feder und Reibelement besteht. Indem den Reibelementen unterschiedliche Fließspannungen zugeordnet werden, kann mit dem Masing‐Modell die zyklische Spannungs‐Dehnungs‐Kurve des Werkstoffs beschrieben werden. Anstelle einer konstanten Fließspannung werden diese verschiedenen Fließspannungen zufällig den einzelnen Elementen, in die die Riss‐Ligament‐Linie im Fließstreifenmodell unterteilt ist, zugewiesen. Neben einer besseren Modellierung des mechanischen Materialverhaltens ist auf diese Weise die Berücksichtigung mikrostruktureller Aspekte des Ermüdungsrisswachstums möglich, wenn auf die Werte der Fließspannungen im Bereich des frühen mikrostrukturellen Risswachstums Einfluss genommen wird. Zur Untersuchung thermomechanischer Ermüdung werden die Fließspannungen in Abhängigkeit von der Temperatur formuliert.  相似文献   

2.
Procedure for the determination of the complete R‐dependency of the crack growth behaviour with only one specimen A new concept for fatigue crack propagation tests has been developed. Using a single specimen, it is possible to determine fatigue crack growth curves (da/dN ‐ ΔK) for every stress ratio between R = 0.9 and R = ‐1. Additionally, the new concept also provides threshold values for fatigue crack growth for different values of R and Kmax. In combination with a continuous crack length measurement tool (such as the DC potential drop method) this testing procedure can be performed with minimal effort of personnel and time. The test procedure consists of a sequence of Kmax‐constant tests with decreasing crack growth rates. As the applied Kmax is increasing stepwise there should be no load history effects. According to the procedures described in the ASTM Standard E 647, the results using this new testing procedure fit very well to the da/dN ‐ ΔK curves generated with different specimens. The tests also fulfil all the requirements of ASTM Standard E 647.  相似文献   

3.
Slow fatigue crack growth in aluminium and magnesium cast alloys in ambient air and in a vacuum The influence of ambient air on near threshold fatigue crack growth in the magnesium cast alloys AZ91 hp, AM60 hp and AS21 hp and in the aluminium cast alloy AlSi9Cu3 has been investigated. Fatigue crack growth properties at a cycling frequency of 20 kHz in ambient air and in a vacuum are significantly different. In a vacuum, the threshold stress intensity amplitude of the aluminium alloy is 30% higher than in ambient air, and the threshold values of the magnesium alloys in a vacuum are up to 85% higher than in ambient air. Moisture of ambient air is responsible for accelerated crack growth at growth rates below 1–3 × 10−9 m/cycle (AlSi9Cu3) and 2–5 × 10−8 m/cycle (magnesium alloys), respectively. In ambient air a minimum crack growth rate of 5 × 10−11 − 2 × 10−10 m/cycle was observed, whereas far lower minimum growth rates were found in a vacuum.  相似文献   

4.
Crack growth and high cycle fatigue behaviour of an AA6060 aluminium alloy after ECAP combined with a subsequent heat treatment Crack growth properties of the Al‐Mg‐Si alloy AA6060 as well as the high cycle fatigue behaviour have been investigated after equal‐channel angular pressing (ECAP). In our study, experiments have been conducted on different stages of microstructural breakdown and strain hardening of the material as they were present after different numbers of ECAP passes. A bimodal condition, obtained after two pressings, and a homogeneously ultrafine‐grained condition after eight repetitive pressings have been investigated. Furthermore, optimized conditions with an enhanced ductility, produced by ECAP processing combined with a following short‐time aging treatment were included into the study. Crack growth experiments have been conducted in the near‐threshold regime and the region of stable crack growth, covering a range of load ratios from R = 0.1 up to 0.7. It was found that the lowered fatigue threshold ΔKth of the as‐extruded material can be enhanced by the combination of ECAP and short‐time aging, owing to the increased ductility and strain hardening capability of this material. By means of SEM investigations and tensile tests, the crack growth properties of the different conditions were related to microstructural and mechanical features. In fatigue tests, load reversals up to failure and the fatigue limit for an as‐extruded condition and an optimized condition after two ECAP‐passes have been compared to the coarse grained initial condition and a remarkable increase in fatigue strength was noted.  相似文献   

5.
Thermal mechanical fatigue behaviour of particle reinforced EN AW‐6061‐T6 and development of residual stresses in the matrix material by thermal mechanical loading The behaviour of non reinforced and 15 Vol.‐% α‐alumina particle reinforced wrought aluminium alloy EN AW‐6061‐T6 in thermal mechanical fatigue loading was investigated at different maximum temperatures. The tests were performed in strain controlled mode by means of an electro‐mechanical testing machine. Alternating load deformation and life cycle behaviour either materials were compared. It came out, that the reinforcement leads to an decreasing thermal mechanical fatigue life cycle while keeping constant the maximum temperature and mechanical loading. The two materials showed softening behaviour due to high maximum temperatures of 573 K to 673 K. However, there is an intense scatter of the number of cycles to failure of the non reinforced alloy aggravating the interpretation of the results. On the other hand the thermal mechanical life cycle increases in combination with increasing maximum temperatures. Simultaneously the part of plastic deformation in mechanical loading increases for both materials, while for a constant total strain range the effective maximum and minimum stresses are decreasing. Furthermore, the development of residual stresses in the matrix of the reinforced alloy by thermal mechanical fatigue loading was analysed. It was observed that only small absolute values of residual stresses will be obtained for these loads. Nevertheless, tendencies of mounting tensile residual stresses can be identified in the direction of thermal mechanical fatigue loading and subsequently reduction of the residual stresses.  相似文献   

6.
Fatigue design of aluminium welded joints by the local stress concept exemplarily shown on the naturally aged wrought aluminium alloy AW‐5083 and the artificially aged wrought aluminium alloy AW‐ 6082 T6 Local fatigue design concepts based on material‐ and microstructural‐related parameters, e.g. the microsupport‐concept, cannot be regarded as easily applicable. The investigations, which compared the micro‐support‐concept with the local stress concept with a fictitious notch radius rf, were carried out with different types of MIG‐welded joints of the aluminium alloys AW‐5083 and AW‐6082 T6 under fully reversed and pulsating axial loading. The evaluation of the results showed that the local stress concept using the fictitious notch radius of rf = 1.0 mm can be applied to aluminium welded joints from plates with thicknesses t ≥ 5 to 25 mm independently from the alloy and weld geometries (fully or partially penetrated butt welds, transversal stiffener). Master design curves are proposed for different stress ratios, i.e. R = ‐1, 0 and 0.5, which allow the consideration of residual stresses as well as load induced mean stresses. The results permit also the suggestion of Δσ = 70 MPa as FAT‐value for the IIW‐Fatigue Design Recommendations  相似文献   

7.
Material Response Analysis and its Application to Rig Tests for the Surface Failure (Nierlich Damage Mode) of Rolling Bearings The material response analysis according to Nierlich using X‐ray diffraction represents an important physical examination technique for the evaluation of material stressing and the lifetime estimation of rolling bearings and other highly loaded machine parts. The method is presented and employed for the evaluation of automobile gearbox rig tests. The extensively described damage modes of the practically predominating surface and the classical sub‐surface failure of rolling bearings can be distinguished that way. In gearboxes, lubricating oil contaminated by metal abrasion of the cogwheels usually appears. Penetrating foreign particles produce indentations at the ring raceways and rolling elements of the rolling bearings, which promotes surface fatigue. The results of the X‐ray diffraction measurements confirm this damage mode. Evaluation of the occurred material stressing permits a more detailed characterization of the surface failure of rolling bearings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号