首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Membrane fouling by humic acids limits the water recovery of nanofiltration in drinking water production. This article investigates if membrane fouling can be reduced by decomposition of humic acids in the concentrate stream by O3 oxidation. RESULTS: At a specific O3 dose of 2.11 g O3 per g COD (17.0 g m?3 O3 (g) for 20 min), a COD reduction of 38% and a hydrophobic COD reduction of 69% is achieved. The membrane permeability of the ozonated solution by NF 270 membranes is higher (20.6 × 10?9 L s?1 m?2 Pa?1) than the permeability if the untreated solution is filtered (2.4 × 10?9 L s?1 m?2 Pa?1). The COD retention of the ozonated solution was similar to the retention of the untreated samples. The addition of H2O2 allows a better mineralization degree, i.e. UVA removal increased from 53% to 66% if H2O2 was added as from 10 min oxidation at the same molar flow rate as O3. CONCLUSION: O3 oxidation can substantially alleviate membrane fouling by humic acids in nanofiltration systems and the addition of H2O2 can slightly improve its decomposition. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
The production of volatile fatty acids by anaerobic digestion of solid potato waste was investigated using a batch solid waste reactor with a working capacity of 2 dm?3 at 37°C. Solid potato waste was packed into the digester and the organic content of the waste was released by microbial activity by circulating water over the bed, using batch loads of 500 g or 1000 g potato waste. The sequence of appearance of the volatile fatty acids was (acetic, propionic); (n‐butyric); (n‐valeric, iso‐valeric, caproic); (iso‐butyric). After 300 h digestion of potato waste on a small scale, the fermentation products were chiefly (mg g?1 total VFAs): acetic acid (420), butyric acid (310), propionic acid (140) and caproic acid (90), with insignificant amounts of iso‐butyric acid, n‐valeric and iso‐valeric acids. When the load of potato solids was increased, the volatile fatty acid content was similar, but butyric acid constituted 110 mg g?1 and lactic acid 400 mg g?1 of the total volatile fatty acids. The maximum soluble chemical oxygen demand (COD) achieved under the experimental conditions used was 27 and 37 g COD dm?3 at low and high loadings of potato solids, respectively. The total volatile fatty acids reached 19 g dm?3 of leachate at both loads of potato solid waste. Gas production was negligible, indicating that methanogenic activity was effectively inhibited. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
In this study, a high performance poly(ether sulfone) (PES) hollow fiber ultrafiltration (UF) membrane has been prepared for removal of natural organic matter (NOM). The membrane was spun from a dope solution containing PES/poly (vinyl pyrrolidone) (PVP 40K)/N‐methyl‐2‐pyrrolidone (NMP) by using a wet‐spinning process. Characterization of the membrane in terms of pure water flux, molecule weight cut‐off (MWCO), and retention for a model humic acid (HA) were conducted, and the fouling resistance was analyzed. The experimental results showed that the membrane had a pure water permeability of 20 × 10?5 L m?2 h?1 Pa?1 and a nominal MWCO of 6000 Da. The results also showed that the membrane retention for humic acid was over 97% and both productivity and selectivity for HA increased with increasing feed velocity. The PES membrane in this study exhibited a much lower fouling tendency than the commercial polysulfone membrane. SEM images revealed that the membrane had an outer dense skin and a porous inner surface. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 430–435, 2006  相似文献   

4.
This study was conducted to investigate the feasibility of a two‐phase anaerobic treatment system for fat‐containing wastewater. The two‐phase system was composed of a continuously stirred tank reactor for acidogenesis and an upflow anaerobic sludge blanket (UASB) reactor for methanogenesis. Its performance was compared with a conventional single‐phase system of a UASB reactor treating synthetic wastewater containing major long‐chain fatty acids (LCFAs). LCFAs did not cause any significant problem up to the LCFA mixture loading rate of 1.21 kg LCFA‐COD m?3 day?1 (3500 mg LCFA‐COD dm?3) in both systems. However, the efficiency of the single‐phase system deteriorated at loading rates above 1.38 kg LCFA‐COD m?3 day?1 (4000 mg LCFA‐COD dm?3), while that of the two‐phase system was still satisfactory. More than 19.2% of LCFAs were degraded and 11.5% of unsaturated LCFAs were saturated in the acidogenesis of the two‐phase system, which led to the enhanced specific methane production rate and the reduced scum layer of the subsequent UASB reactor. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
BACKGROUND: Raw cheese whey originating from white cheese production results in a strong and complex wastewater excessively rich in organic matter (chemical oxygen demand, COD = 28–65 g L?1), fatty matter (14–24.5 g L?1) and acidity (3.9–6.1 g L?1). It was treated in a three‐stage configuration consisting of a pre‐acidification (PA) tank and sequential upflow anaerobic sludge bed reactors (UASBRs) at 2.8–7 g COD L?1 day?1 organic loading rates, during which the effects of effluent recycling at low rates and promoted SRB activity were investigated. Acidification, volatile fatty acids (VFA), COD and fatty matter removal and volatile solids were monitored throughout the system during the study. RESULTS: Recycling of the effluent promoted VFA and COD removal as well as pH stability in both stages of the UASBRs and the effluent where high alkalinity levels were recovered reducing alkali requirement to 0.05 g OH g?1 CODapplied. Higher removal rates of 71–100 and 50–92% for VFA and COD were obtained by use of recycling. Fatty matter was removed at 63–89% throughout the study. Volatile solids build‐up was significant in the inlet zones of the UASBRs. CONCLUSIONS: The system produced efficient acidification in the PA tank, balanced pH levels and an effluent high in alkalinity and BOD/COD ratio. Efficient VFA removal and solids immobilization was obtained in both stages up to the highest loading rate. Recycling improved the system performance under high fatty matter loading conditions. A major advantage of the sequential system was that the second stage UASBR compensated for reduced performance in the first stage. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
The saving and recycling of chemical substances, which may be hazardous to human health and ecosystems, constitute a desirable goal worldwide. It is important to use a natural polymer that has a highly specific function and an environmental friendliness. In this study, humic acid was added to a natural polymer, a pectin membrane, and a hydrophobic poly(1‐trimethylsilyl‐1‐propyne) (PMSP) membrane to enhance the affinity for phenol or aniline. Also, the separation performance, based on the membrane materials and methods of addition, was investigated. The effect of the adsorption of phenol and aniline by humic acid was investigated. A high rate of aniline adsorption was observed. The interaction of the humic acids and the aniline was mainly observed by polar bonding. For the PMSP membrane with humic acid added to the surface, the humic acid exists in a colloidal state. During pervaporation, the permeation of water was prevented by the adsorbed solute. Because the permeability of aniline increased and the permeability of water significantly decreased, the PMSP membrane with humic acid added to the surface had a high permeate aniline concentration, and the permselectivity was improved. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 461–468, 2004  相似文献   

7.
This paper details experimental trials of aconitic acid transport from defined mixtures of organic acids (trans‐aconitic, oxalic, malic and citric) and from cane molasses solutions using a supported liquid membrane (SLM) apparatus. The SLM was impregnated with tributyl phosphate extractant combined with Shellsol 2046 diluent. The transport rates of the organic acids, bulk impurities and glucose were measured. The conditions varied were: extractant to diluent ratio (1:3–3:1), organic acid concentration (2.5–40 mg cm?3 organic acid), pH of departure phase (1–5.5) and temperature (22–80 °C). Results for the organic acid mixtures showed that aconitic acid and oxalic acid were transported at much greater rates than malic and citric acids. Aconitic acid was transported to a significant degree with recovery of 400 g kg?1 over a 24 h period. Operation at temperatures higher than 22 °C caused instability of the membrane and bulk leakage across the membrane. With molasses, the purity of the aconitic acid recovered ranged between 400 and 600 g kg?1 (dry basis) with aconitic acid transport rates of 0.17–0.25 g m?2 min?1. The extraction of other acids (oxalic, malic and citric) and impurities was significantly less, hence a process to produce high purity aconitic acid based on this method is technically feasible. © 2002 Society of Chemical Industry  相似文献   

8.
BACKGROUND: A great amount of wastewater with high contents of chemical oxygen demand (COD) are produced by ethanol production. It would be useful to utilize distillery wastewater to produce L‐lactic acid, which could be a high additional value byproduct of ethanol production. The fermentation process of L‐lactic acid production by a newly isolated Enterococcus hawaiiensis CICIM‐CU B0114 is reported for the first time. RESULTS: The strain produced 56 g L?1 of L‐lactic acid after cultivation for 48 h in optimized medium consisting of (g L?1) 80 glucose, 10 peptone, 10 yeast extract, 1.5 Na2HPO4 and 0.2 MgSO4. E. hawaiiensis CICIM‐CU B0114 was isolated and purified by subculture for growing and producing L‐lactic acid in distillery wastewater of very high gravity (VHG) from ethanol fermentation. L‐lactic acid fermentation was further studied with distillery wastewater substrate in 7 L and 15 L fermentors. The results showed that L‐lactic acid concentrations of 52 g L?1 and 68 g L?1 was achieved in 7 L and 15 L fermentors with the initial sugar concentrations of 67 g L?1 and 87 g L?1, respectively. CONCLUSION: The production of L‐lactic acid by the newly isolated E. hawaiiensis CICIM‐CU B0114 was carried out and the fermentation medium was optimized by orthogonal experimental design. This new strain holds the promise of L‐lactic acid production utilizing distillery wastewater from VHG ethanol fermentation. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
BACKGROUND: This study considers batch treatment of saline wastewater in an upflow anaerobic packed bed reactor by salt tolerant anaerobic organisms Halanaerobium lacusrosei . RESULTS: The effects of initial chemical oxygen demand (COD) concentration (COD0 = 1880–9570 mg L?1), salt concentration ([NaCl] = 30–100 g L?1) and liquid upflow velocity (Vup = 1.0–8.5 m h?1) on COD removal from salt (NaCl)‐containing synthetic wastewater were investigated. The results indicated that initial COD concentration significantly affects the effluent COD concentration and removal efficiency. COD removal was around 87% at about COD0 = 1880 mg L?1, and efficiency decreased to 43% on increasing COD0 to 9570 mg L?1 at 20 g L?1 salt concentration. COD removal was in the range 50–60% for [NaCl] = 30–60 g L?1 at COD0 = 5200 ± .100 mg L?1. However, removal efficiency dropped to 10% when salt concentration was increased to 100 g L?1. Increasing liquid upflow velocity from Vup = 1.0 m h?1 to 8.5 m h?1 provided a substantial improvement in COD removal. COD concentration decreased from 4343 mg L?1 to 321 mg L?1 at Vup = 8.5 m h?1, resulting in over 92% COD removal at 30 g L?1 salt‐containing synthetic wastewater. CONCLUSION: The experimental results showed that anaerobic treatment of saline wastewater is possible and could result in efficient COD removal by the utilization of halophilic anaerobic bacteria. Copyright © 2008 Society of Chemical Industry  相似文献   

10.
BACKGROUND: Biopolymers produced by microbes are in demand as their biodegradable and biocompatible properties make them suitable for disposable products and for potential use as biomaterials for medical applications. The effective microbial production of copolyesters of 3‐hydroxybutyrate (3HB) and 4‐hydroxybutyrate(4HB) with high molar fractions of 4HB unit by a wild‐type Wautersia eutropha H16 was investigated in culture media containing 4‐hydroxybutyric acid (4HBA) and different carbon substrates in the presence of various α‐amino acids. RESULTS: The addition of carbon sources such as glucose, fructose and acetic acid to the culture medium containing 4HBA in the presence of α‐amino acids resulted in the production of random poly(3HB‐co‐4HB) with compositions of up to 77 mol% 4HB unit, but the yields of copolyesters with 60–77 mol% 4HB units were less than 15 wt% of dried cell weights. In contrast, when carbon sources such as propionic acid and butyric acid were used as the co‐substrates of 4HBA in the presence of α‐amino acids, poly(3HB‐co‐4HB) copolyesters with compositions of 72–86 mol% 4HB were produced at maximally 47.2 wt% of dried cell weight (11.3 g L?1) and the molar conversion yield of 4HBA to 4HB fraction in copolyesters was as high as 31.4 mol%. Further, poly(3HB‐co‐4HB) copolyesters with compositions of 93–96 mol% 4HB were isolated at up to 35.2 wt% of dried cell weights by fractionation of the above copolymers with chloroform/n‐hexane. CONCLUSION: The productivity of copolyesters with over 80 mol% 4HB fractions was as high as 0.146 g L?1 h?1 (3.51 g L?1 for 24 h) by flask batch cultivation. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
BACKGROUND: Electrolytic manganese residues are the largest and most dangerous waste stream from the electrolytic manganese metal industry, and recovery of Mn from manganese residues is one of the main methods of recycling this waste. Bioleaching of electrolytic manganese residues for Mn extraction was investigated in this study. RESULTS: An extraction efficiency as high as 99.7% was achieved at 1% slag pulp concentration, 2320 mg L?1 extraction concentration and 80% extraction efficiency was attained at 8% slag pulp concentration, indicating the application potential of bioleaching in Mn extraction from manganese residues. CONCLUSION: The extraction of Mn from manganese residues depended exclusively on the non‐contact mechanism. The acidic dissolution of soluble Mn2+ induced by sulfur‐oxidizing bacteria resulted in 91.9% Mn extraction, while the reduction dissolution of insoluble Mn4+ by iron‐oxidizing bacteria caused 5.8% Mn extraction. The combined action of sulfur‐oxidizing bacteria and iron‐oxidizing bacteria assured the maximum Mn extraction. EDS and XRD analysis of bioleaching residues further demonstrated the bioleaching mechanism involved. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
The direct treatment of whey wastewater at various sludge ages (10–75 days) and high biomass concentration (above 50 g mixed liquor suspended solid (MLSS) dm?3) in a submerged membrane bioreactor (sMBR) is described. The chemical oxygen demand (COD) of raw whey varied in the range of 60 and 90 g dm?3. After feeding the sMBR with raw whey, effluent COD reduced to about 20 g dm?3. The effluent was free of suspended solids and total coliform bacteria. Total phosphorus (TP) and orthophosphate (Ortho‐P) in the influent varied between 204 and 880 mg dm?3 and between 180 and 620 mg dm?3, and effluent TP and Ortho‐P reduced to 113 and 109 mg dm?3, respectively. The ammonium and nitrate concentrations in the influent were in the ranges of 3.4 and 120 mg dm?3 and 10 and 503 mg dm?3, respectively. The effluent ammonium concentration varied between 17.6 and 198 mg dm?3 and nitrate concentrations varied between 0.9 and 69 mg dm?3. Effluent turbidity varied between 23 and 111 FAU (Formazin Attenuation Unit). The results show that sMBR is an effective pre‐treatment system for high‐strength agro‐wastewaters because of its ability to reduce the pollution load. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
BACKGROUND: The combined treatment of olive mill wastewater (OMWW) by applying the anaerobic digestion process and further treatment in a system consisting of filters and membranes is presented. The anaerobic digestion of the OMWW took place in a high rate system, the periodic anaerobic baffled reactor (PABR). Application of the membrane system aimed at purifying the anaerobic effluent. RESULTS: An increase in the organic loading rate was achieved by increasing the influent chemical oxygen demand (COD) and alternatively by decreasing the hydraulic retention time (HRT). The first option caused process failure, since the volatile fatty acids accumulation resulted in negligible biogas production. In contrast, the second change (decrease in HRT) led to stable operation that permitted the reduction of the HRT to 3.75 d and increase of the organic loading rate to 8.9 g tCOD L?1 d?1 with satisfactory total COD removal (72%). Higher total COD removal (up to 80%) was observed at lower organic loading rates (<3.5 g tCOD L?1 d?1). Further purification in the membrane units resulted in a final permeate of less than 0.1 g tCOD L?1. The membrane systems proved to be more efficient on the anaerobic effluent than on the raw OMWW (the final permeate in that case contained 1g tCOD L?1). CONCLUSIONS: The anaerobic digestion of OMWW in a PABR was stable even at high organic loading rates. Filtering and membrane fractionation of the PABR effluent resulted in a final permeate stream of high quality, suitable for irrigation and/or reuse in the proposed operating scheme for diluting the OMWW prior to anaerobic digestion. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
A study of the effect of organic loading rate on the performance of anaerobic digestion of two‐phase olive mill solid residue (OMSR) was carried out in a laboratory‐scale completely stirred tank reactor. The reactor was operated at an influent substrate concentration of 162 g chemical oxygen demand (COD) dm?3. The organic loading rate (OLR) varied between 0.8 and 11.0 g COD dm?3 d?1. COD removal efficiency decreased from 97.0% to 82.6% when the OLR increased from 0.8 to 8.3 g COD dm?3 d?1. It was found that OLRs higher than 9.2 g COD dm?3 d?1 favoured process failure, decreasing pH, COD removal efficiency and methane production rates (QM). Empirical equations described the effect of OLR on the process stability and the effect of soluble organic matter concentration on the total volatile fatty acids (TVFA)/total alkalinity (TAlk) ratio (ρ). The results obtained demonstrated that rates of substrate uptake were correlated with concentration of biodegradable COD, through an equation of the Michaelis–Menten type. The kinetic equation obtained was used to simulate the anaerobic digestion process of this residue and to obtain the theoretical COD degradation rates in the reactor. The small deviations obtained (equal to or lower than 10%) between values calculated through the model and experimental values suggest that the proposed model predicts the behaviour of the reactor accurately. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
Decolourization and COD removal from synthetic wastewater containing Reactive Brilliant Orange K‐R (RBOKR) dye using sonophotocatalytic technology was investigated. Experimental results showed that this hybrid technology could efficiently remove the colour and reduce COD from the synthetic dye‐containing wastewater, and that both processes followed pseudo first‐order kinetics. At the condition of 0.1 m3 h?1 airflow, 0.75 g dm?3 titanium dioxide and 0.5 mmol dm?3 RBOKR solution, the rate constants of decolourization and COD removal were 0.0750 and 0.0143 min?1 respectively for the sonophotocatalytic process; 0.0197 and 0.0046 min?1 respectively for the photocatalytic process and 0.0005 and 0.0001 min?1 respectively for the sonochemical process. The rate constants of sonophotocatalysis were greater than that of both the photocatalytic and sonochemical processes either in isolation or as a sum of the individual process, indicating an apparent synergetic effect between the photo‐ and sono‐processes. Copyright © 2003 Society of Chemical Industry  相似文献   

16.
A novel intumescent additive was synthesized by neutralizing 3,5‐diaminobenzoic acid hydrochloride salt with ammonium dihydrogen phosphate. This compound, which melts at 257°C, decomposes concurrently to release carbon dioxide gas. The flame retardant performance of this compound as a primary fire retardant and in combination with expandable graphite (EG) was evaluated by cone calorimetry. Cone calorimeter results showed that addition of 10 wt % EG alone lowers peak heat release rate (pHRR) of carbon black‐pigmented polyethylene from 710 ± 109 to 342 ± 15 kW m?2, whereas addition of 27 wt % of the novel intumescent lowered it to 400 ± 16 kW m?2. Combinations of these two additives were able to decrease the pHRR even further. Furthermore, the novel intumescent additive reduced the flame out time from 773 ± 307 to 537 ± 69 s although all other EG containing samples increased it. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40493.  相似文献   

17.
Laboratory experiments were conducted to test the feasibility of ozone sparging to oxidize PCBs in sediments, and to determine the organic acid content and biodegradability of the oxidation products. Two PCBs were tested; 2‐,2′‐dichlorobiphenyl (DCB) and 2‐,3‐,4‐,2′‐,3′‐,4′‐hexachlorobiphenyl (HCB). DCB and HCB were allowed to adsorb onto solids in slurries of pure kaolinite and river sediments containing 2% native organic matter (NOM). Ozone was sparged through the slurries while concentrations of PCBs and Cl?, and chemical oxygen demand (COD) were measured with time. Gas chromatography/mass spectrometry (GC/MS) was used to identify the organic acids produced from the reaction of ozone with DCB and HCB. After sparging, the liquid was placed in bioreactors with inoculum from a domestic wastewater treatment plant and nutrients. Ozone sparging in the kaolinite slurries removed 94% of HCB and 97% of DCB in 30 days. In contrast, 55 days were required to achieve the same PCB removal in river sediment slurries. Ozone doses per g of DCB and HCB in kaolinite were 19 g and 30 g, respectively. Doses were 13–14 times greater in river sediments. Formic and oxalic acids were ozonation products of both PCBs. Specific ozonation products of DCB and HCB were 2‐hydroxybenzoic acid and 2,3,4‐trihydroxybenzoic acid, respectively. The results show that ozone caused ring cleavage of PCBs and stoichiometric replacement of Cl with OH groups. Over 93% of the soluble COD from ozone sparging was biodegraded within 20–26 days in the bioreactors. © 2002 Society of Chemical Industry  相似文献   

18.
The performance of a laboratory‐scale mesophilic acidogenic reactor was evaluated in this study, in terms of volatile fatty acid production and distribution, with respect to variations in hydraulic retention time (HRT). The continuous flow‐completely mixed anaerobic reactor, coupled with a conventional gravity settling tank and a continuous recycling system, was operated in a hydraulic retention time ranging between 24 and 12 h, and up to an organic loading rate of about 9.3 kg COD m?3 d?1, without pH control. The acid production gradually increased proportionally to the organic loading rate, with decrease in hydraulic retention time. The highest degree of acidification and the rate of acid production were 56% and 3.1 g dm?3 d?1 at 12 h of HRT. Variations in hydraulic retention time affected volatile fatty acid production and distribution substantially, for the range investigated. Acetic, propionic, butyric and valeric acids were commonly produced during acidogenesis of dairy wastewater. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
A new membrane‐assisted hybrid bioreactor was developed to remove ammonia and organic matter. This system was composed of a hybrid circulating bed reactor (CBR) coupled in series to an ultrafiltration membrane module for biomass separation. The growth of biomass both in suspension and biofilms was promoted in the hybrid reactor. The system was operated for 103 days, during which a constant ammonia loading rate (ALR) was fed to the system. The COD/N‐NH4+ ratio was manipulated between 0 and 4, in order to study the effects of different organic matter concentrations on the nitrification capacity of the system. Experimental results have shown that it was feasible to operate with a membrane hybrid system attaining 99% chemical oxygen demand (COD) removal and ammonia conversion. The ALR was 0.92 kg N‐NH4+ m?3 d?1 and the organic loading rate (OLR) achieved up to 3.6 kg COD m?3 d?1. Also, the concentration of ammonia in the effluent was low, 1 mg N‐NH4+ dm?3. Specific activity determinations have shown that there was a certain degree of segregation of nitrifiers and heterotrophs between the two biomass phases in the system. Growth of the slow‐growing nitrifiers took place preferentially in the biofilm and the fast‐growing heterotrophs grew in suspension. This fact allowed the nitrifying activity in the biofilm be maintained around 0.8 g N g?1 protein d?1, regardless of the addition of organic matter in the influent. The specific nitrifying activity of suspended biomass varied between 0.3 and 0.4 g N g?1 VSS d?1. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
BACKGROUND: Pure terephthalic acid (PTA) is a petrochemical product of global importance and is widely applied as an important raw material in making polyester fiber and polyethylene terephthalate (PET) bottles. In this work, a single‐chamber microbial fuel cell (MFC) was constructed using terephthalic acid (TA) with a chemical oxygen demand (COD) concentration range from 500 mg L?1 to 3500 mg L?1 as the electron donor and strain PA‐18 as the biocatalyst. RESLUTS: In the single chamber MFC, several factors were examined to determine their effects on power output, including COD concentration and electrode spacing. The characteristic of the strain PA‐18 was further studied. Cyclic voltammetry showed that electrons were directly transferred onto the anode by bacteria in biofilms, rather than self‐produced mediators of bacteria in the solutions. Scanning electron microscopy (SEM) observation showed that the anodic electrode surface was covered by bacteria which were responsible for electron transfer. Direct 16s‐rDNA analysis showed that the PA‐18 bacteria shared 99% 16SrDNA sequence homology with Pseudomonas sp. CONCLUSIONS: Electricity generation from TA in MFC was observed for the first time. The maximum power density produced by TA was 160 mW m?2, lower than that achieved using domestic wastewater. This novel technology provided an economical route for electricity energy recovery in PTA wastewater treatment. High internal resistance was the major limitation. To further improve the power output, the electron transfer rate was accelerated by overexpression of membrane the protein gene of the strain PA‐18 and by reducing the electrolyte and mass transfer resistance by optimizing reactor configuration. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号