首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
聚变-裂变混合能源堆包括聚变中子源和以天然铀为燃料、水为冷却剂的次临界包层,主要目标是生产电力。利用输运燃耗耦合程序系统MCORGS计算了混合能源堆一维模型的燃耗,给出了中子有效增殖因数keff、能量放大倍数M、氚增殖比TBR等物理量随时间的变化。通过分析能谱和重要核素随燃耗时间的变化,说明混合能源堆与核燃料增殖、核废料嬗变混合堆的不同特点。本文给出的结果可作为混合堆中子输运、燃耗分析程序校验的参考数据,为混合堆概念研究提供了基础数据。  相似文献   

2.
介绍输运燃耗耦合程序MCORGS的理论模型,利用MCORGS研究铀-水体积比对混合能源堆中子学性能的影响。研究表明,采用天然铀为裂变燃料,且铀-水比为2:1时,可实现较高的能量放大,保持氚自持,中子学性能可以维持100 a以上;采用压水堆乏燃料时,铀-水比的选择余地更大,能量放大和产氚能力提高,但燃料增殖能力下降。  相似文献   

3.
次临界能源堆是以能源供应为目的的一种聚变裂变混合堆,以聚变驱动,天然铀为裂变燃料,轻水为冷却剂。本文针对该混合堆开发了基于MCNP与ORIGENS的三维中子输运燃耗耦合程序MCORGS,分析了包层三维中子学模型。提出简化干法后处理,设想利用衰变热将乏燃料加热到2 100K,将沸点低于该温度的裂变产物挥发去除。计算了包层各区材料每年发生的原子移位数,建议采用10a左右的换料周期,乏燃料经后处理后可多次复用。第1个寿期内氚增殖比TBR平均约1.15,包层能量放大倍数M平均约12;第2~9个寿期内TBR平均约1.35,M平均约18。利用流体动力学程序完成了包层CAD模型建立、网格划分及稳态传热计算分析,各区材料的最高温度均低于许用温度并有较大裕量。  相似文献   

4.
为验证在中国先进研究堆(CARR)内进行国际热核聚变实验堆(ITER)氚增殖包层模块(TBM)辐照实验的可行性和安全性,进行了氚增殖剂球床组件堆内辐照物理及热工计算分析。氚增殖剂包层模块主要是固态氚增殖剂陶瓷球床。本文采用Monte Carlo粒子输运模拟程序对氚增殖剂球床进行堆内建模,计算球床的中子注量率、能量沉积和产额,得到不同功率下球床的中子注量率、发热功率和产氚速率以及球床组件引入反应堆的反应性。根据物理计算得到的组件各部件发热情况建立热工计算一维模型,通过更改反应堆功率得到满足实验要求的工况并采用三维程序进行验证。物理与热工计算分析的结果表明,在反应堆运行功率为20 MW的工况下球床组件各部件的温度均不超过限值。  相似文献   

5.
基于离散纵标输运计算方法的三维燃耗程序发展研究   总被引:2,自引:1,他引:1  
为了精确描述和分析具有强烈各向异性中子注量率空间分布的反应堆燃耗过程,本文实现了三维SN 输运计算与燃耗计算的耦合,发展了相应的三维输运燃耗耦合计算程序.该程序系统采用接口程序自动耦合三维SN输运计算程序和同位素燃耗计算程序的方法实现对三维中子学计算模型的精细燃耗计算,获得燃料同位素成分、燃耗反应性、中子注量率空间分布等参数随燃耗时间的变化量.采用IAEA 基准校核例题对程序系统进行了校核,计算结果初步证明了所开发的三维燃耗程序系统的正确性.  相似文献   

6.
基于国际热核聚变实验堆(ITER)实验包层方案,提出了一个超临界水冷固态实验包层概念设计方案。设计采用Be作为中子倍增剂,Li4SiO4作为氚增殖剂,CLAM钢作为结构材料。包层第一壁采用多层盘道设计以提高第一壁出口温度,内部采用增殖剂与中子倍增剂分层布置以提高热沉积与氚增殖率。为验证包层设计的可行性,分析计算了三维包层氚增殖率与热沉积的分布,然后根据中子学计算得到的结果对超临界水冷固态实验包层进行了数值模拟研究。结果表明:包层功率密度分布较合理;氚增殖率满足运行中氚自持的要求;在冷却剂出口温度达到500℃条件下材料温度不超过限值。该设计方案能满足中子学设计与热工水力的要求。  相似文献   

7.
聚变裂变混合堆比纯聚变堆在工程及技术方面要求低,且在产生核燃料、嬗变长寿命核废料以及固有安全性方面具有一定优势,因此,越来越受到人们的重视。增殖包层是混合堆系统的关键部件,已有的包层研究基本上是基于较成熟的铀-钚燃料循环技术。针对我国铀资源相对较少而钍资源较丰富的现状,本文就一种新型的钍基燃料增殖锕系元素嬗变包层进行了初步的中子学研究,利用一维离散纵标法燃耗程序BISONC以及Monte-Carlo粒子输运程序MCNP,对包层的关键核参数,诸如氚增殖比、少量锕系元素的嬗变质量、233U产量以及热功率等,进行了较详细的计算分析。计算结果表明,生成的核燃料233U的富集度可达到3.65%,从而满足压水堆燃料富集度要求。分析结果为下一步的包层优化设计提供了依据。  相似文献   

8.
基于轻水冷却的压力管式混合堆,采用压水堆卸载的乏燃料以及天然铀氧化物陶瓷燃料,建立混合堆包层的换料方案,详细计算了包层中子学性能随燃耗的变化情况,计算结果表明,包层在维持3000 MW热功率输出的同时,可以保证氚自持(氚增殖比TBR>1.20),而每5 a仅需向包层添加80 t左右的重金属燃料。基于建立的平衡循环计算了包层采用不同燃料时的单位发电燃料成本。结果表明,采用乏燃料和天然铀时的单位发电燃料成本分别为1.82×10-3、1.35×10-3$/(k W·h)。  相似文献   

9.
聚变驱动次临界堆双冷嬗变包层材料活化计算与分析   总被引:1,自引:1,他引:0  
对聚变驱动次临界堆 (FDS Ⅰ )包层进行了材料活化计算与分析。利用多功能中子学程序系统VisualBUS1 .0及多群数据库HENDL1 .0 /MG进行中子输运计算 ,以获得包层各个功能区的中子注量率能谱 ;在此基础上 ,使用欧洲活化计算程序FISPACT及IAEA聚变活化数据库FENDL/A 2 .0分别对停堆初期包层不同功能区的剂量率水平和衰变余热水平、停堆后期结构材料与氚增殖剂 /冷却剂的活化性能及其杂质的控制要求进行了计算及分析。  相似文献   

10.
为满足中国聚变工程实验堆(CFETR)包层的应用要求,本文提出氦冷陶瓷增殖(HCCB)包层方案。为验证HCCB包层设计方案的合理性与可行性,采用三维蒙特卡罗粒子输运程序MCNP,计算和分析了HCCB包层方案的氚增殖比、中子壁负载、中子通量密度、核热、辐照损伤等中子学特性。结果表明,HCCB包层方案满足氚自持要求,中子通量密度和核热分布合理,屏蔽性能良好,基本满足设计要求。  相似文献   

11.
The paper describes recent progress in integral neutronics experiments in the analytical mockups for the blanket in a fusion-fission hybrid energy reactor. A conceptual blanket of the hybrid reactor is mainly loaded with natural uranium and lithium material. In the fission fuel region, uranium material and light water are arranged alternately. The mockups of the conceptual blanket are designed and used for checking neutron property of the blanket by integral experiments. Based on materials available, the spherical fission mockup for fission research and plutonium production consists of three layers of depleted uranium shells and several layers of polyethylene and graphite shells. The spherical lithium mockup for tritium production consists of depleted uranium and LiPb alloy shells. The cubic mockup consists of natural uranium and polyethylene and its structure is basically consistent with one of the fuel region. In the mockups with the D-T neutron source, the plutonium production rates, uranium fission rates and tritium production rates are measured, separately. The measured results are compared to the calculated ones with MCNP-4B code and ENDF/B-VI library data.  相似文献   

12.
We propose a preliminary design for a fusion–fission hybrid energy reactor (FFHER), based on current fusion science and technology (with some extrapolations forward from ITER) and well-developed fission technology. We list design rules and put forward a primary concept blanket, with uranium alloy as fuel and water as coolant. The uranium fuel can be natural uranium, LWR spent fuel, or depleted uranium. The FFHER design can increase the utilization rate of uranium in a comparatively simple way to sustain the development of nuclear energy. We study the interaction between the fusion neutron and the uranium fuel with the aim of to achieving greater energy multiplication and tritium sustainability. We also review other concept hybrid reactor designs. We design integral neutron experiments in order to verify the credibility of our proposed physical design. The combination of this program of research with the related thermal hydraulic design, alloy fuel manufacture, and nuclear fuel cycle programs provides the science and technology foundation for the future development of the FFHER concept in China.  相似文献   

13.
介绍了次临界能源堆包层中子学概念研究进展。采用MCNP与ORIGENS耦合的输运燃耗程序MCORGS开展研究。利用一维模型改进了产氚区和屏蔽区的设计。产氚区采用多区分层布置,降低水对中子的吸收,大幅减少了Li4SiO4的用量。屏蔽区采用铁和水多区分层布置,包层泄漏中子数为10-4量级,超导线圈沉积热小于60 kW,28 a内中子注量小于1022m-2。针对不同的铀水体积比(RV),探讨了相应的后处理策略。随着RV的减小,需去除的裂变产物相应增加。建议采用RV=2的物理设计,平常只需作燃料重整,每隔几十年作1次高温干法去除沸点在3 600 K以下的裂变产物即可。最后,参考国际热核实验堆几何结构,建立三维包层模型,进行了初步研究。  相似文献   

14.
Supercritical-pressure light water cooled fast reactor adopts the blanket fuel assemblies with depleted uranium fuel and zirconium hydride layer in the core for negative coolant void reactivity. Thermal neutrons are generated in the core of fast reactor. It is called “fast and thermal neutron coupled core”. The purpose of the present study is to examine the accuracy of assembly and core calculations including preparation of the macroscopic cross sections with the SRAC code system for “fast and thermal neutron coupled core” in comparison with the Monte Carlo codes, MVP and MVP-BURN. Accuracy of the neutron multiplication factor and coolant void reactivity calculation has been evaluated in four types of cores of different fractions of the blanket fuel assembly with zirconium hydride rods. The conventional analysis is based on the macroscopic cross sections which are prepared with infinite lattice. The conventional SRAC calculation underestimates the neuron multiplication factor for all types of cores. Other findings are that the conventional SRAC calculation overestimates coolant void reactivity for the cores without zirconium hydride rods, and underestimates coolant void reactivity for the core of all blanket fuel assemblies having zirconium hydride rods. To overcome these problems, it has been proposed that the macroscopic cross sections of seed fuel assembly are prepared with the model that a seed fuel assembly is surrounded by blanket fuel assemblies in order to take into account the effects of the surrounding fuel assemblies. Evaluations show that accuracy of the neutron multiplication factor by the SRAC calculation can be improved by the proposed method.  相似文献   

15.
聚变-裂变混合堆水冷包层中子物理性能研究   总被引:5,自引:2,他引:3  
研究直接应用国际热核聚变实验堆(ITER)规模的聚变堆作为中子驱动源,采用天然铀为初装核燃料,并采用现有压水堆核电厂成熟的轻水慢化和冷却技术,设计聚变-裂变混合堆裂变及产氚包层的技术可行性。应用MCNP与Origen2相耦合的程序进行计算分析,研究不同核燃料对包层有效增殖系数、氚增殖比、能量放大系数和外中子源效率等中子物理性能的影响。计算分析结果显示,现有核电厂广泛使用的UO2核燃料以及下一代裂变堆推荐采用的UC、UN和U90Zr10等高性能陶瓷及合金核燃料作为水冷包层的核燃料,都能满足以产能发电为设计目标的新型聚变 裂变混合堆能量放大倍数的设计要求,但只有UC和U90Zr10燃料同时满足聚变燃料氚的生产与消耗自持的要求。研究结果对进一步研发满足未来核能可持续发展的新型聚变-裂变混合堆技术具有潜在参考价值。  相似文献   

16.
17.
一种嬗变次锕系核素(MA)的聚变驱动次临界包层的概念设计被提出。利用MCNP+ORIGEN2对次临界嬗变包层的能量放大倍数(M)、氚增殖比(TBR)、第一壁负载等中子学参数进行了分析。在保证这些参数满足设计要求的前提下,分析了两种不同的装载方案对MA嬗变能力的影响,最终MA的嬗变率能达24.3%,嬗变支持比为28。研究表明,该聚变驱动次临界嬗变包层能有效嬗变MA。  相似文献   

18.
This study presents the possibility of the power flattening in the ARIES-RS breeder reactor using mixed (Th,U)C or (Th,U)N fuels. Two different types of mixing, namely, homogeneous mixing (HM) and linear mixing (LM) were used to investigate the uniformity of fission power distribution through the fuel zone. In HM, fraction of uranium content were kept constant in all rows of the fuel zone whereas, in LM the fraction of the uranium were linearly increased from the first to last fuel row in the fuel zone. Neutron transport calculations were performed with the aid of the SCALE4.3 system by solving the Boltzmann transport equation with the XSDRNPM code in 238 neutron groups and a S8–P3 approximation. Flat fission power distribution was maintained successfully for the blanket using linearly mixed fuels. However, the fission density profile was not uniform in the blanket with homogeneously mixed fuels. It decreased exponentially form the 1st to 10th fuel row.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号