首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A stannate chemical conversion process followed by an activation procedure was employed as the pre‐treatment process for AZ91D magnesium alloy substrate. Zn was electroplated onto the pre‐treated AZ91D magnesium alloy surface from pyrophosphate bath to improve the corrosion resistance and the solderability. The surface morphologies of conversion coating and zinc coating were examined with scanning electron microscope (SEM). The phase composition of conversion coating was investigated by X‐ray diffraction (XRD). The electrochemical corrosion behavior of the coatings in the corrosive solution was investigated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The experimental results showed that the activated stannate chemical conversion coating provided a suitable interface between zinc coating and the AZ91D magnesium alloy substrate. The corrosion resistance of the AZ91D substrate was improved by the zinc coating.  相似文献   

2.
Chromate conversion coatings can be successfully used for corrosion protection of magnesium alloys. However, the environmental laws have imposed severe restrictions on chromate use in many countries. In this study, a novel protective environmental‐functionally gradient coating was formed on AZ91D magnesium alloy by non‐chromate surface treatments, which consisted of pre‐etching followed by cerium‐based chemical conversion before applying the sol–gel CeO2 film. It was determined by the analysis of X‐ray diffraction that the gradient coating was mainly composed of CeO2. The calculation, based on the Scherrer formula, further revealed the formation of nanocrystalline structure in the coating. Scanning electron microscopy (SEM) observations showed that the coating was homogeneous and compact, no obvious cracked structure occurred. According to the immersion tests, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this novel environmental‐functionally gradient coating.  相似文献   

3.
利用同步辐射X射线实时成像技术,原位研究了处理液组分H3PO4,KMnO4及MnCO3对镁合金/处理液界面无铬化学转化膜形成过程的影响,并结合扫描电镜分析了所生成转化膜的表面形貌.研究结果表明:高能同步辐射X射线可以透过镁合金/处理液界面,利用原位成像技术能够实时观察转化膜的生长过程;KMnO4能够显著促进AZ31镁合金转化膜的形成,所得到的转化膜表面较平整,裂纹较少,而MnCO3对转化膜形成的促进作用有限.  相似文献   

4.
赵明  何广平  孙德辉 《表面技术》2009,38(2):28-30,59
为了获得性能优异的转化膜层,利用正交试验确定了组分为Ca(NO3)2、含Mn成膜剂、磷酸(85%)和加速剂的AZ91D镁合金多元复合转化处理液优化配方.用扫描电镜和X射线衍射仪分析了该配方所得转化膜的表面形貌和相结构.试验表明:转化膜表面分布着未穿透转化膜的裂纹,多元复合膜层由非晶态物质以及少量的Ca0.965Mg2Al16O27、Mn5.64P3、ZnAl2O4和(Mg0.66Al0.34)(Al0.83Mg0.17)2O4晶体构成.通过极化曲线分析转化膜在5%的NaCl溶液中的耐蚀性能,结果表明:多元转化膜具有比传统含Cr6+化合物的Dow1处理工艺所得转化膜优良的耐蚀性能.  相似文献   

5.
采用高锰酸盐、钼酸盐、锡酸盐转化液分别对AZ91D镁合金进行表面化学转化,得到三种不同的化学转化膜。分别通过SEM、EDS和全浸试验研究不同转化膜的表面微观形貌、成分和腐蚀率,通过划格法和中性盐雾试验法研究转化膜外部有机涂层的附着性能和耐蚀性能。结果表明,高锰酸盐和钼酸盐转化膜表面具有大量微细裂纹,锡酸盐转化膜表面呈鱼鳞状,均为后续涂装提供了具有一定粗糙度的表面。锡酸盐转化膜的耐蚀性最好,高锰酸盐转化后并涂层的附着力和耐蚀性能最好。  相似文献   

6.
The physical, chemical and mechanical properties of magnesium alloys make them attractive materials for automotive and aerospace applications. However, these materials are susceptible to corrosion and wear. This work discusses the potential of using sol‐gel based coatings consisting of ZrO2 and 15 wt.% of CeO2. The CeO2 component provides enhanced corrosion protection, while ZrO2 impart corrosion as well as wear resistance. Coating deposition was performed by the dip coating technique on two magnesium alloy substrates with different surface finishes: AZ91D (as‐casted, sand‐blasted, and machined) and AZ31 (rolled and machined). All as‐deposited coatings (xerogel coatings) were then subjected to 10 h annealilng: a temperature of 180°C was applied to the AZ91D alloy and 140°C to the AZ31 alloy. Morphological and structural properties of the annealed coatings were investigated by scanning electron microscopy, atomic force microscopy and transmission electron microscopy. Coating composition was examined using energy dispersive X‐ray analysis. Adhesion of the annealed ZrO2‐CeO2 coatings on the substrates, assessed by scratch tests, showed critical loads indicative of coating perforation of up to 32 N. Hardness and elasticity, measured using depth‐sensing nanoindentation tests, gave a hardness and elastic modulus of 4.5 GPa and 98 GPa, respectively. Salt spray corrosion tests performed on these coatings showed superior corrosion resistance for AZ91D (as‐casted and machined) and AZ31 (machined), while severe corrosion was observed for the AZ31 (rolled) and AZ91D (sand‐blasted) magnesium alloy substrates.  相似文献   

7.
镁合金磷酸盐 /氮化硅双层复合膜结构及耐蚀性能研究   总被引:1,自引:1,他引:0  
宋辉  赵明  何广平  冯伟 《表面技术》2014,43(5):71-74
目的针对传统镁合金化学转化膜裂纹尺寸大、耐腐蚀性差等问题,制备一种镁合金磷酸盐/氮化硅双层结构的抗腐蚀复合膜。方法先对镁合金进行传统磷酸盐转化处理,再运用等离子体增强化学气相沉积技术沉积氮化硅膜层,分析复合膜的形貌、元素分布、表面电位及极化曲线,并与磷酸盐转化膜进行对比。结果氮化硅膜层能在磷酸盐转化膜裂纹处选择性优先沉积,从而在相当程度上填补转化膜层的裂纹,形成致密的复合膜结构。具有复合膜结构的镁合金表面电位和腐蚀电位明显高于传统磷酸盐转化处理的镁合金。结论镁合金表面制备磷酸盐/氮化硅双层复合膜后,抗腐蚀能力明显高于传统磷酸盐转化处理的镁合金。  相似文献   

8.
A remarkable improvement in the pitting corrosion resistance of 304 stainless steel was attempted using a novel duplex passivation treatment method. First, chemical passivation in nitric acid followed electrochemical passivation via potential polarization of step cycling in sodium nitrate electrolyte. Compared with traditional chemical passivation, breakdown potential was increased from 0.31 VSCE to positive than 0.9 VSCE at 70°C in a solution bearing 0.6 M [Cl?] concentration. The critical pitting temperature was enhanced from 21.5°C to above 70°C in a solution with 6 M [Cl?] concentration. Impedance analysis and X‐ray photoelectron spectroscopy results show that a more compact passive film with a higher ratio of chromium oxide on iron oxide was achieved by electrochemical passivation compared with chemical passivation. Morphology observation suggested that the potential polarization of step cycling slightly increased the dissolution of inclusions after being subjected to chemical passivation. The probable reason for the improvement on pitting resistance is discussed in detail based on inclusion dissolution and the protectiveness in passive film.  相似文献   

9.
In order to replace the hazardous chromate‐based surface treatment, a new cerium chemical conversion coating was developed on 316L stainless steel through a mixed solution of hydrated cerium nitrate, citric acid, and hydrogen peroxide. The chemical composition was characterized by energy‐dispersive spectroscopy, X‐ray photoelectron spectroscopy and atomic force microscope. The dense conversion coating is composed of CeO2 with a small amount of Ce2O3 and has small grain size lower than 50 nm. Its thickness is about 47.4 nm as determined by spectroscopic ellipsometry analysis. Potentiodynamic polarization was used to study the corrosion behavior of the coatings in the concentrated artificial seawater at 72 °C. In comparison with the conventional nitric acid‐chromate passivated specimens, the cerium conversion coatings show much higher pitting potentials. It is suggested that the cerium conversion treatment is more effective than the nitric acid‐chromate passivation to improve the pitting resistance of 316L stainless steel used in the hot seawater environments.  相似文献   

10.
Plasma‐sprayed 8YSZ (zirconia stabilized with 8 wt% yttria)/NiCoCrAlYTa thermal barrier coatings (TBCs) were laser‐glazed using a continuous‐wave CO2 laser. Open pores within the coating surface were eliminated and an external densified layer was generated by laser‐glazing. The hot corrosion resistances of the plasma‐sprayed and laser‐glazed coatings were investigated. The two specimens were exposed for the same period of 100 h at 900 °C to a salt mixture of vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4). Serious crack and spallation occurred in the as‐sprayed coating, while the as‐glazed coating exhibited good hot corrosion behavior and consequently achieved a prolonged lifetime. The results showed that the as‐sprayed 8YSZ coating achieved remarkably improved hot corrosion resistance by laser‐glazing. Changes in the coatings were studied by scanning electron microscopy (SEM) to observe the microstructure and X‐ray diffraction (XRD) technique to analyze the phase composition. XRD results showed that the reaction between yttria (Y2O3) and V2O5 produced yttrium vanadate (YVO4), leaching Y2O3 from YSZ and causing the progressive destabilization transformation from the tetragonal (t) to monoclinic (m) phase. The external dense layer produced by laser‐glazing restrained the penetration of the molten salt, to a certain extent, into the coating, which led to a relatively low m‐ZrO2 content in the coating after the hot corrosion test. Additionally, the segmented cracks in the coating surface induced by laser‐glazing were helpful to the improvement of strain tolerance of the coating. The two factors were important contributions to the significant enhancement of hot corrosion resistance of the as‐glazed YSZ coating.  相似文献   

11.
To improve the corrosion properties of TiAl6V4 alloy, TiN monolayer and Ti/TiN multilayer coatings are deposited by reactive magnetron sputtering. The phase, structure, and morphology properties are investigated by grazing‐incidence X‐ray diffraction, field‐emission scanning electron microscopy, and atomic force microscopy, respectively, and the corrosion behavior is evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization. The TiN monolayer and Ti/TiN multilayer with thickness of 1,350 and 1,410 nm have the (111) and (002) preferred orientation and crystallite size of 42.5 and 24.3 nm, respectively. Columnar growth in TiN is hindered by the Ti interlayers and no cracking is observed between the layers indicating strong adhesion. The nanostructured Ti/TiN coating forms stable surface titanium oxide which improves the corrosion resistance by approximately 80 and four times compared with TiAl6V4 alloy and TiN coating, respectively. Hindrance of the columnar structure in TiN by the Ti interlayer decreases the local corrosion rate and enhances the galvanic corrosion resistance by forming a layer on the β‐phase enriched with vanadium as well as a TiO2 stable layer. The nanostructured Ti/TiN coating demonstrates capacitive behavior with phase angles approximately ?50° and high impedance values at low frequency to be the corrosion resistance mechanism.  相似文献   

12.
目的研究一种绿色环保的表面处理方法,以提高镁合金的耐蚀性。方法采用化学浸泡法,以硝酸钇为成膜物质,在AZ31B镁合金表面成功制备一种新型稀土盐转化膜,并以氧化石墨烯为阻隔剂对该转化膜进行复合掺杂。采用扫描电镜(SEM)对膜层的表面形貌进行观察,采用析氢实验和电化学测试对不同试样在3.5%Na Cl溶液中的耐蚀性进行了研究。结果镁合金钇盐转化膜表面平整均一,覆盖良好。氧化石墨烯掺杂后的钇盐膜层表面出现了大小不均一的瘤状物质,膜层完整,未出现裂痕。析氢实验结果显示,经过处理的转化膜试样可以极大地抑制腐蚀反应的发生。由极化曲线可知,钇盐转化膜的存在使镁合金的腐蚀电位发生了明显正移,正移了150 m V;而氧化石墨烯掺杂的钇盐膜层的腐蚀电位相对于掺杂前变化不大,但其腐蚀电流密度是掺杂前的1/28。电化学交流阻抗谱的测试结果显示,氧化石墨烯掺杂钇盐转化膜的电荷转移电阻最大,Rct为2485?·cm2;钇盐转化膜的电荷转移电阻次之,Rct为1224?·cm2。两者的电荷转移电阻相对于未经处理的镁合金都有明显提升。结论钇盐转化膜可以明显提高AZ31B镁合金的耐蚀性,氧化石墨烯的加入可以进一步提高转化膜层的耐蚀性。  相似文献   

13.
A novel multilayer Mg–Al intermetallic coating on the magnesium alloy was obtained by AlCl3–NaCl molten salt bath treatment. The molten salt was treated at 400 °C, which is lower than the treatment temperature of solid diffusion Al powder. The thick Al12Mg17, Al0.58Mg0.42 and Al3Mg2 multilayer Mg–Al intermetallic coating forms on the magnesium alloy. The corrosion resistance of AZ91D alloy with and without coating by multilayer of Mg-Al intermetallic compound was evaluated by electrochemical impedance spectroscopy measurements in 3.5% (mass fraction) NaCl solution. The polarization resistance value of the multilayer coating on the magnesium alloy by molten salt bath treatment is greater than that of the uncoated one, which is attributed to the homogenously distributed intermetallic phases.  相似文献   

14.
The corrosion behavior of as‐cast AZ91D magnesium alloy in 0.1M sodium sulfate solution at the corrosion potential (Ecorr) was investigated by using electrochemical impedance spectroscopy (EIS), environmental scanning electron microscopy (ESEM), energy dispersive X‐ray spectroscopy (EDS) and X‐ray diffraction (XRD). The results showed that the corrosion of AZ91D started at both the primary α‐Mg and the eutectic α‐Mg. The surface first was covered by a film (MgO, Mg(OH)2) which became thicker with time. Due to the dissolution of the eutectic α‐Mg, the concentration of aluminum increased, MgAl2(SO4)4 · 2H2O precipitated at the primary α‐Mg and progressively spread to the eutectic α‐Mg areas. The surface film changed from two‐layer to three‐layer structure with the increase of immersion time.  相似文献   

15.
Electroless Ni‐P‐ZrO2 and Ni‐P coatings on AZ91D magnesium alloy were prepared, and their corrosion protection properties were compared in this paper. The potentiodynamic curves and electrochemical impedance spectroscopy (EIS) of the coated magnesium alloy in 3.5% NaCl solution showed that the corrosion performance of Ni‐P‐ZrO2 composite coating was superior to that of Ni‐P coating. The same conclusion was obtained with salt spray and immersion tests. The corrosion morphologies of two kinds of coatings with various immersion time intervals in 3.5% NaCl solution indicated that most corrosion products concentrated on the nodules boundaries of Ni‐P coating and blocked corrosion pit was the main corrosion form. For the Ni‐P‐ZrO2 coating, tortuous nodules boundaries were not the weak sites of the coating and corrosion initiated from the nickel phosphor alloy around the nanometer powders. Open corrosion pits occurred on the composite coating surface, and the coating was corroded gradually. Thus, the Ni‐P‐ZrO2 coating exhibited better corrosion protection property to magnesium alloy substrate than Ni‐P coating.  相似文献   

16.
稀土盐转化膜是一种绿色环保的金属表面处理技术,为探究硝酸镧成膜时间对镁合金耐蚀性的影响,在镁合金表面成功制备出不同成膜时间下的镧盐转化膜。 试验采用扫描电镜(SEM)、能谱仪(EDS)以及 X 射线衍射仪(XRD) 对膜层的表面形貌及组成进行了表征,采用点滴试验、电化学方法(EIS / Tafel)对不同成膜时间下膜层的耐蚀性进行了测试,并使用软件对结果进行拟合。 试验结果表明,镁合金表面生成了一层微米级的稀土转化膜,转化膜表面存在裂纹,其中 30 min 成膜时间的裂纹最小;点滴试验及电化学测试结果表明镧盐转化膜能够大幅度地提高镁合金耐蚀性, 30 min 成膜时间获得的膜层耐蚀性最佳,相对于空白镁合金,其自腐蚀电流密度下降了 4 个数量级,自腐蚀电位正移了 943 mV;EDS 结果表明,膜层主要由 La 和 O 元素组成,XRD 结果进一步表明 La(OH)3 是膜层的主要成分。  相似文献   

17.
An innovative phosphate–permanganate surface treatment (PPT) was developed to improve the static strength of adhesive-bonded 4 mm thick magnesium AZ31 sheets. The phosphate coating having the chemical composition of 1.43% P, 1.63% F and 0.15% Mn (in mass %) was formed after the treatment with PPT solution which has the formulation of KMnO4, K2HPO4, Na2SiO3 and NaF. The combination of additives NaF and Na2SiO3 and the pH values in the range of 5–6 for a phosphate–permanganate solution was found to be the key elements for the formation of the phosphate coating. The appearance of the phosphate coating and corrosion resistance to 3.5%NaCl solution was assessed. To study the durability of the coating, the effect of an exposure in a hot-humid environment (96% R.H. at 40 °C) on the static strength of adhesive-bonded magnesium AZ31 was investigated. Test results showed that the phosphate coating improved not only the static strength of bonded magnesium AZ31 joints in an ambient condition but also the durability in a hot-humid environment. These results suggest that PPT surface pretreatment is capable of improving the static strength and thermal durability of adhesive-bonded magnesium AZ31 sheets.  相似文献   

18.
Exploratory work on the electrochemical behaviour of the Al-4%Zn alloy in the presence of In3+ in weakly acid chloride and acetic media is reported. It was found that in chloride solutions, active dissolution takes place at very negative potentials (−1.5 VSCE). This significative enhancement in the electrochemical activity of the alloy is described and discussed. The aim of this paper is to explain the relationship between the operating potential (−1.1 VSCE) given by the commercial alloy (basically an Al-Zn-In alloy), its high efficiency, its quasi-uniform attack observed and the enhanced activity found (−1.5 VSCE). An unified model that explains this findings and the activation process of pure Al by In3+ is proposed. It was found that two activation mechanism are operative on Al: (i) When sufficient amount of In at the interface in quasi-liquid state is present, an In-Al amalgam is responsible for the activation process (−1.5 VSCE). This process is favoured by Zn reach zones that favours In enrichment at the interface by displacement reaction. (ii) At higher anodic potentials (near −1.2 VSCE), the presence of In at the interface facilitates a chloride adsorption process which depolarised the anodic reaction.  相似文献   

19.
董丽惠  王华  李琳 《表面技术》2024,53(4):34-45
目的 改善钒酸盐转化膜表面形貌,提高单一钒酸盐转化膜的耐蚀性能。方法 使用偏钒酸盐和硅烷通过两步法在镁合金表面制备钒/硅烷复合转化膜,比较不同硅烷制备的复合膜的耐蚀性能,从而确定使用硅烷的种类,采用扫描电子显微镜(SEM)、X射线能谱(EDS)、X射线光电子能谱(XPS)和傅里叶红外光谱(FT-IR)观察转化膜的微观形貌并分析转化膜的组成和结构,通过交流阻抗测试(EIS)、Tafel极化曲线测试和全浸腐蚀实验评价转化膜的耐蚀性能,并采用划格实验和接触角测试评价转化膜的结合力和疏水性。结果 确定使用BTEPST(双-[3-(三乙氧基硅)丙基]-四硫化物)作为成膜组分,使用偏钒酸钠和BTESPT在镁合金表面成功制备钒/BTESPT复合膜,复合膜表面均匀平整,致密无裂纹,与基体结合力好,具有疏水性,该复合膜的组成元素为Mg、V、C、O、Si和S,且元素分布较均匀,膜层是包含Si—O—S、Si—O—Mg、Si—O—V等共价键的交联结构。交流阻抗测试结果显示,钒/BTESPT复合转化膜的膜层电阻为1.17×105?·cm2,电荷转移电阻为1.076×1...  相似文献   

20.
以硫酸镍为主盐的AZ91D镁合金化学镀镍研究   总被引:1,自引:0,他引:1  
研究了以硫酸镍为主盐的AZ91D镁合金化学镀镍.采用无铬前处理在AZ91D镁合金表面形成高锰酸盐和磷酸盐化学转化膜,用SEM、EDX、XRD和极化曲线等方法研究化学转化膜和化学镀镍层的形貌、组成及在3.5%的NaCl溶液中的耐腐蚀性能.结果表明,在高锰酸盐转化膜表面形成的化学镀镍层呈胞状,较致密,有微裂纹;在磷酸盐转化膜上形成的化学镀镍层也呈胞状,晶胞大小不均匀,没有微裂纹.镀层厚度均匀,致密,无孔隙.在3.5%的NaCl溶液中的极化曲线表明化学转化膜对镁合金基体的耐腐蚀性能提高不大,经高锰酸盐和磷酸盐前处理的化学镀镍层腐蚀电位分别为-0.48V_(SCE)和-1.12 V_(SCE).以硫酸镍为主盐的经磷酸盐前处理的化学镀镍层较好地提高了镁合金的耐腐蚀性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号