首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the last decade, deep eutectic solvents (DESs) have emerged as a promising alternative to traditional organic solvents, from both environmental and technological perspectives. The number of structural combinations encompassed by DESs is tremendous; thus, it is possible to design an optimal DES for each specific enzymatic reaction system. In (bio)catalytic processes, a DES can serve as solvent/co‐solvent, as an extractive reagent for an enzymatic product, and as a pretreatment solvent of enzymatic biomass. To date, hydrolases are the most studied enzymes in DESs, which is not surprising given that lipases are the most important industrial enzymes. At the same time, there are a limited number of papers dealing with synthetic reactions in DESs involving other hydrolytic enzymes (epoxide hydrolases, phospholipase, proteases and haloalkane dehalogenases), lyases, and dehydrogenases (as a part of the whole Saccharomyces cerevisae and Escherichia coli cell biocatalysis). When designing efficient biocatalytic processes involving DESs, independent of the reaction type and enzyme used, the following steps should be included: (i) preparation and characterisation of the DES, (ii) screening of the DES for optimal enzyme performance, (iii) selection and optimisation of the biocatalytic protocol, and (iv) recovery of the product/DES and DES recycling with possible scale‐up. In this paper, we will present some practical aspects that we experienced while working with these solvents, together with some major observations that are available in the literature. © 2020 Society of Chemical Industry  相似文献   

2.
Oxidative biocatalytic reactions were performed on solid‐supported substrates, thus expanding the repertoire of biotransformations that can be carried out on the solid phase. Various phenylacetic and benzoic acid analogues were attached to controlled pore glass beads via an enzyme‐cleavable linker. Reactions catalyzed by peroxidases (soybean and chloro), tyrosinase, and alcohol oxidase/dehydrogenase gave a range of products, including oligophenols, halogenated aromatics, catechols, and aryl aldehydes. The resulting products were recovered following cleavage from the beads using α‐chymotrypsin to selectively hydrolyze a chemically non‐labile amide linkage. Controlled pore glass (CPG) modified with a polyethylene glycol (PEG) linker afforded substantially higher product yields than non‐PEGylated CPG or non‐swellable polymeric resins. This work represents the first attempt to combine solid‐phase oxidative biotransformations with subsequent protease‐catalyzed cleavage, and serves to further expand the use of biocatalysis in synthetic and medicinal chemistry.  相似文献   

3.
For the last two decades, synthetic biologists have been able to unlock and expand the genetic code, generating proteins with unique properties through the incorporation of noncanonical amino acids (ncAAs). These evolved biomaterials have shown great potential for applications in industrial biocatalysis, therapeutics, bioremediation, bioconjugation, and other areas. Our ability to continue developing such technologies depends on having relatively easy access to ncAAs. However, the synthesis of enantiomerically pure ncAAs in practical quantitates for large-scale processes remains a challenge. Biocatalytic ncAA production has emerged as an excellent alternative to traditional organic synthesis in terms of cost, enantioselectivity, and sustainability. Moreover, biocatalytic synthesis offers the opportunity of coupling the intracellular generation of ncAAs with genetic-code expansion to overcome the limitations of an external supply of amino acid. In this minireview, we examine some of the most relevant achievements of this approach and its implications for improving technological applications derived from synthetic biology.  相似文献   

4.
Spiroketals are key structural motifs found in diverse natural products with compelling biological activities. However, stereocontrolled synthetic access to spiroketals, independent of their inherent thermodynamic preferences, is a classical challenge in organic synthesis that has limited in-depth biological exploration of this intriguing class. Herein, we review our laboratory's efforts to advance the glycal epoxide approach to the stereocontrolled synthesis of spiroketals via kinetically controlled spirocyclization reactions. This work has provided new synthetic methodologies with applications in both diversity- and target-oriented synthesis, fundamental insights into structure and reactivity, and efficient access to spiroketal libraries and natural products for biological evaluation.  相似文献   

5.
《分离科学与技术》2012,47(11):2519-2538
Abstract

The replacement of petrochemicals with biobased chemicals requires efficient bioprocesses, biocatalysis, and product recovery. Biocatalysis (e.g., enzyme conversion and fermentation) offers an attractive alternative to chemical processing because biocatalysts utilize renewable feedstocks under benign reaction conditions. One class of chemical products that could be produced in large volumes by biocatalysis is organic acids. However, biocatalytic reactions to produce organic acids typically result in only dilute concentrations of the product because of product inhibition and acidification that drives the reaction pH outside of the optimal range for the biocatalyst. Buffering or neutralization results in formation of the acid salt rather than the acid, which requires further processing to recover the free acid product.

To address these barriers to biocatalytic organic acid production, we developed the “separative bioreactor” based on resin wafer electrodeionization, which is an electrodeionization platform that uses resin wafers fabricated from ion exchange resins. The separative bioreactor simultaneously separates the organic acid from the biocatalyst as it is produced, thus it avoids product inhibition enhancing reaction rates. In addition, the separative bioreactor recovers the product in its acid form to avoid neutralization. The instantaneous separation of acid upon formation in the separative bioreactor is one of the first truly one‐step systems for producing organic acids.

The separative bioreactor was demonstrated with two systems. In the first demonstration, the enzyme glucose fructose oxidoreductase (GFOR) was immobilized in the reactor and later regenerated in situ. GFOR produced gluconic acid (in its acid form) continuously for 7 days with production rates up to 1000 mg/L/hr at >99% product recovery and GFOR reactivity >30 mg gluconic acid/mg GFOR/hour. In the second demonstration, the E. coli strain CSM1 produced lactic acid for up to 24 hours with a productivity of >200 mg/L/hr and almost 100% product recovery.  相似文献   

6.
生物催化羰基不对称还原合成手性醇的研究及应用进展   总被引:10,自引:2,他引:8  
曾嵘  杨忠华  姚善泾 《化工进展》2004,23(11):1169-1173
综述了国内外利用生物催化羰基的不对称还原合成手性醇的研究情况。介绍了生物催化各类潜手性羰基化合物不对称还原的原理、菌种的筛选,以及生物催化不对称还原各类羰基化合物的实例。  相似文献   

7.
Sugar‐based compounds are widely used in pharmaceuticals, cosmetics, detergents and food. They are mainly produced by chemical methods, but the use of enzymes as ‘a greener alternative’ to organic synthesis has been investigated for more than 20 years. Due to the low polar substrate solubility in organic solvents compatible with enzymes, research has focused on the application of substitutes for biocatalysis, especially ionic liquids (ILs). After introducing the main properties of ILs and especially their ability to solubilize sugars, this review focuses on one of their applications, the biocatalytic synthesis of carbohydrate derivatives. In this context, they can be used in pure IL systems, in IL/IL systems or in IL/organic solvent systems. Finally, this review provides an update on the environmental fate of ILs. Their exploitation in ‘green’ processes is still limited due to their low degradability but research is currently under way to design new more ‘eco‐friendly’ ILs. Copyright © 2012 Society of Chemical Industry  相似文献   

8.
Ionic liquids have shown potential as green reaction media compared with organic solvents, mainly due to their lack of vapour pressure. In non‐aqueous enzymology, ionic liquids are opening up new fields. The advantages of using ionic liquids over the use of organic solvents as reaction medium for biocatalysis include enhancement of enzyme activity, stability and selectivity. In this work, the enzymatic synthesis of esters in ionic liquids has been extensively reviewed. Numerous examples of the application of ionic liquids as reaction medium for the enzymatic production of esters have been included. The effect of the nature of the ionic liquid on activity, selectivity and stability of enzymes which catalyze esters synthesis has been carefully analysed. Innovative reaction methodologies for the biosynthesis of esters, including ionic liquid/supercritical carbon dioxide biphasic systems and the integrated reaction/separation processes using supported liquid membranes based on ionic liquids have been revised. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
Ionic liquids (ILs) having unique properties such as no measurable vapor pressure, nonflammability and a wide temperature range of liquid phase have been recognized as potential green solvents. As a result, ILs have been extensively explored as reaction media for various biocatalytic reactions over a decade. Enzyme activities in ILs are generally comparable with or higher than those observed in conventional organic solvents. Furthermore, enhanced thermal and operational stabilities and regio- or enantioselectivities have been observed in many cases. Thus, ILs offer new possibilities for the application of solvent engineering to biocatalytic reactions. This review discusses the effect of physicochemical properties of ILs on biocatalysis with respect to enzyme activity, stability and selectivity by systematizing literature data on enzyme-catalyzed reaction in ILs.  相似文献   

10.
Biocatalysts represent an efficient, highly selective and greener alternative to metal catalysts in both industry and academia. In the last two decades, the interest in biocatalytic transformations has increased due to an urgent need for more sustainable industrial processes that comply with the principles of green chemistry. Thanks to the recent advances in biotechnologies, protein engineering and the Nobel prize awarded concept of direct enzymatic evolution, the synthetic enzymatic toolbox has expanded significantly. In particular, the implementation of biocatalysts in continuous flow systems has attracted much attention, especially from industry. The advantages of flow chemistry enable biosynthesis to overcome well-known limitations of “classic” enzymatic catalysis, such as time-consuming work-ups and enzyme inhibition, as well as difficult scale-up and process intensifications. Moreover, continuous flow biocatalysis provides access to practical, economical and more sustainable synthetic pathways, an important aspect for the future of pharmaceutical companies if they want to compete in the market while complying with European Medicines Agency (EMA), Food and Drug Administration (FDA) and green chemistry requirements. This review focuses on the most recent advances in the use of flow biocatalysis for the synthesis of active pharmaceutical ingredients (APIs), pharmaceuticals and natural products, and the advantages and limitations are discussed.  相似文献   

11.
The biocatalytic synthesis of natural and modified nucleosides with nucleoside phosphorylases offers the protecting-group-free direct glycosylation of free nucleobases in transglycosylation reactions. This contribution presents guiding principles for nucleoside phosphorylase-mediated transglycosylations alongside mathematical tools for straightforward yield optimization. We illustrate how product yields in these reactions can easily be estimated and optimized using the equilibrium constants of phosphorolysis of the nucleosides involved. Furthermore, the varying negative effects of phosphate on transglycosylation yields are demonstrated theoretically and experimentally with several examples. Practical considerations for these reactions from a synthetic perspective are presented, as well as freely available tools that serve to facilitate a reliable choice of reaction conditions to achieve maximum product yields in nucleoside transglycosylation reactions.  相似文献   

12.
Although C C bond hydrolases are distributed widely in Nature, they has as yet have received only limited attention in the area of biocatalysis compared to their counterpart the C‐heteroatom hydrolases, such as lipases and proteases. However, the substrate range of C C hydrolases, and their non‐dependence on cofactors, suggest that these enzymes may have considerable potential for applications in synthesis. In addition, hydrolases such as the β‐diketone hydrolase from Rhodococcus (OCH) are known, that catalyse the formation of interesting chiral intermediates. Further enzymes, such as kynureninase and a meta‐cleavage product hydrolase (MhpC), are able to catalyse carbon‐carbon bond formation, suggesting wider applications in biocatalysis than previously envisaged. In this review, the distribution, catalytic characteristics and applications of C C hydrolases are described, with a view to assessing their potentialfor use in biocatalytic processes in the future.  相似文献   

13.

BACKGROUND

It is widely accepted that the poor thermostability of Baeyer–Villiger monooxygenases limits their use as biocatalysts for applied biocatalysis in industrial applications. The goal of this study was to investigate the biocatalytic oxidation of 3,3,5‐trimethylcyclohexanone using a thermostable cyclohexanone monooxygenase from Thermocrispum municipale (TmCHMO) for the synthesis of branched ?‐caprolactone derivatives as building blocks for tuned polymeric backbones. In this multi‐enzymatic reaction, the thermostable cyclohexanone monooxygenase was fused to a phosphite dehydrogenase (PTDH) in order to ensure co‐factor regeneration.

RESULTS

Using reaction engineering, the reaction rate and product formation of the regio‐isomeric branched lactones were improved and the use of co‐solvents and the initial substrate load were investigated. Substrate inhibition and poor product solubility were overcome using continuous substrate feeding regimes, as well as a biphasic reaction system with toluene as water‐immiscible organic solvent. A maximum volumetric productivity, or space–time‐yield, of 1.20 g L‐1 h‐1 was achieved with continuous feeding of substrate using methanol as co‐solvent, while a maximum product concentration of 11.6 g L‐1 was achieved with toluene acting as a second phase and substrate reservoir.

CONCLUSION

These improvements in key process metrics therefore demonstrate progress towards the up‐scaled Baeyer–Villiger monooxygenase‐biocatalyzed synthesis of the target building blocks for polymer application. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
  相似文献   

14.
离子液体在有机合成中的应用新进展   总被引:1,自引:0,他引:1  
室温下的离子液体作为一种绿色、环保、可替代传统有机溶剂的新型溶剂受到了极大关注.总结了近年来离子液体在有机合成反应中的研究新进展,包括氧化反应、还原反应、Friedel-Crafts反应、Diels-Alder反应、Heck反应、硝化反应及其它合成反应.  相似文献   

15.
结合医药企业用人要求,笔者对本课程进行了教学改革的探讨,确定了合适的教学内容和考核方案,促使有机合成单元反应、经典人名反应、合成路线的设计策略、目标产物的分离和提取,以及精细化工新产品的研制等知识融于化学制药技术的学习过程中,有利于提高学生的综合能力以及就业竞争力。  相似文献   

16.
Enzymes from secondary metabolic pathways possess broad potential for the selective synthesis of complex bioactive molecules. However, the practical application of these enzymes for organic synthesis is dependent on the development of efficient, economical, operationally simple, and well-characterized systems for preparative scale reactions. We sought to bridge this knowledge gap for the selective biocatalytic synthesis of β-hydroxy-α-amino acids, which are important synthetic building blocks. To achieve this goal, we demonstrated the ability of ObiH, an l -threonine transaldolase, to achieve selective milligram-scale synthesis of a diverse array of non-standard amino acids (nsAAs) using a scalable whole cell platform. We show how the initial selectivity of the catalyst is high and how the diastereomeric ratio of products decreases at high conversion due to product re-entry into the catalytic cycle. ObiH-catalyzed reactions with a variety of aromatic, aliphatic and heterocyclic aldehydes selectively generated a panel of β-hydroxy-α-amino acids possessing broad functional-group diversity. Furthermore, we demonstrated that ObiH-generated β-hydroxy-α-amino acids could be modified through additional transformations to access important motifs, such as β-chloro-α-amino acids and substituted α-keto acids.  相似文献   

17.
Historically, biocatalytic ketone reductions involved the use of Baker's yeast. Within the last five years, a significant and growing number of isolated ketoreductases have become available that have rendered yeast-based reductions obsolete. The broad substrate range and exquisite selectivities of these enzymes repeatedly outperform other ketone reduction chemistries, making biocatalysis the general method of choice for ketone reductions. Presented here is a summary of our understanding of the capabilities and limitations of these enzymes.  相似文献   

18.
离子液体作为一种新型的非水生物催化溶剂,由于其特有的性质有可能取代传统有机溶剂,并在有机化学、食品工业、新能源等领域中得到应用。介绍了离子液体在全细胞催化中的应用,着重介绍了离子液体在全细胞催化合成有机物、生物柴油制备和原位萃取3方面的应用,并阐述了将离子液体应用于全细胞催化所面临的问题。  相似文献   

19.
综述了水相中的各种有机合成反应技术、生物催化反应技术、催化剂的回收和产品分离技术以及水相反应中电化学和太阳能化学技术,并对水作反应介质的绿色化学技术在化工中的应用和发展进行了展望.  相似文献   

20.
The application of microfluidics in organic chemistry is a valuable tool to access new synthesis pathways and to break limitations set by traditional batch chemistry. In the past, the majority of research focused on solving problems associated with individual reactions. It is necessary to advance the field by incorporating flow chemistry in longer multistep syntheses to open more direct paths towards complicated compounds. Several strategies were developed to meet the demands of a four‐step synthesis, which includes biphasic nitrations, gaseous substrates, and very fast reactions on multifunctional molecules. A unique micro flow setup was applied in each reaction to meet its specific requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号