首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
在混合能谱超临界水冷堆中,冷却剂通过堆芯过程中跨拟临界点引起的密度等参数的剧烈变化易导致系统产生密度波振荡而不稳定,因此混合能谱超临界水冷堆的稳定性对系统的安全性至关重要。本文利用频域法研究快谱区的流动稳定性,给出在不同状态下的稳定性边界,同时对冷却剂入口流量、进出口压差和通道划分等对稳定性的影响进行了分析。结果表明:大的入口流量有利于系统的稳定;高的进出口压差对系统稳定性有利;轴向功率均匀分布较非均匀分布系统的稳定性差,可提供保守结果;热通道的功率密度越大,对系统的稳定越不利。研究结果对超临界水冷堆设计和优化有一定指导价值。  相似文献   

2.
超临界水冷堆燃料性能验证实验(SCWR-FQT)将对1个小型燃料组件在超临界水环境下进行堆内性能测试。本工作应用修改过的ATHLET程序对包含该燃料组件的超临界水冷实验回路进行建模,并对其冷却剂管道破口导致的失水事故进行分析计算。计算结果表明,现有安全系统设计基本能保证在这些事故情况下维持燃料棒实验段的有效冷却。结果显示,修改过的ATHLET程序对超临界水冷系统的模拟具有良好的适用性。  相似文献   

3.
简要介绍超临界水冷堆(SCWR)的设计要求和专设安全系统的设计原则,对SCWR自动泄压系统(ADS)、高压补水箱(RMT)、非能动余热排出系统(ICS)、非能动安全壳冷却系统(PCCS)和重力驱动堆芯冷却系统(GDCS)的功能及设计方案进行了详细描述。选取失流事故对SCWR安全系统的运行进行分析,验证了上述专设安全系统的有效性。  相似文献   

4.
应用RELAP5-3D程序建立了超临界水冷堆(SCWR)的稳态模型,并在此基础上,分别对SCWR的两种瞬态和两种事故工况进行了分析。汽轮机旁路系统的存在可有效维持反应堆压力,保证反应堆安全。若SCWR失去给水,在辅助给水系统启动之前,向下流的水棒可通过热传导带走堆芯热量,并向燃料通道内提供冷却剂,缓解堆芯升温。因而,向下流的水棒体现了SCWR的安全性。主泵卡轴事故由于没有惰转,最热包壳温度值最大,因而主泵惰转可有效缓解包壳温度的升高。  相似文献   

5.
基于修改后的最佳估算程序ATHLET-SC建立了典型的超临界水冷反应堆系统模型。对3种典型的非失水事故(失去给水加热、汽轮机失去负载且旁排未开启、给水泵卡轴)进行了模拟和敏感性分析,得到了堆功率、质量流量、最高包壳温度和最高燃料中心温度随时间变化的计算结果。结果表明,上述事故中系统压力、最高燃料包壳温度和最高燃料中心温度均可满足事故安全准则。  相似文献   

6.
使用改进的系统程序RELAP5建立了一个混合能谱超临界水堆(SCWR-M)模型。为研究混合能谱超临界水堆失流事故特性,以获取缓解混合能谱超临界水堆失流事故的措施,选取反应堆冷却剂泵惰转时间、压力容器上部储水空间容积和安注流量作为主要参数进行分析。研究表明,混合能谱超临界水堆系统的设计是可行的。反应堆冷却剂泵惰转15 s,压力容器上部水空间容积大于27 m3,以及安注流量高于系统满功率稳态流量的5%是缓解混合能谱超临界水堆失流事故的主要措施。  相似文献   

7.
超临界水冷堆述评   总被引:6,自引:4,他引:2  
超临界水冷堆(SCWR)是在高于水的临界点(374℃,22.1MPa)的温度和压力下运行的反应堆。相对于传统的轻水堆,它的热效率显著提高,可达45%。由于冷却剂在超临界状态下不发生相变,可直接与能量转换设备相联,从而简化了反应堆的结构。在SCWR中不需再循环和射流泵、稳压器、蒸汽发生器、汽水分离器和干燥器。它的主要特点是经济性好。  相似文献   

8.
唐宇 《国外核动力》2004,25(2):7-18
超临界水冷堆(SCWR)是第四代国际论坛(GIF)选定的需要进行研究开发的六种反应堆之一。由于SCWR的热效率比较高(大约为45%,比目前的轻水堆33%的效率要高得多),并且可以使电厂显著地简化,所以,SCWR被认为是一种比较有前途的先进核能系  相似文献   

9.
超临界水冷堆MOX燃料特性分析   总被引:2,自引:0,他引:2  
针对超临界水冷堆组件,采用不同Pu含量的MOX燃料进行组件计算,得到不同燃料条件下的燃耗深度、功率分布因子、慢化剂温度反应性系数等结果,并对比分析在超临界水冷堆中应用MOX燃料与应用UO2燃料对组件性能的影响,以及不同Pu含量MOX燃料间的性能区别。分析结果表明,在超临界水冷堆设计中,应用MOX燃料与应用UO2燃料有相似的功率分布,应用MOX燃料可以增加燃耗深度,并有良好的慢化剂温度反应性系数。经过合理设计的MOX燃料可较好应用于超临界水冷堆中,且产生更好的性能。  相似文献   

10.
超临界水冷堆CSR1000大破口失水事故分析   总被引:2,自引:0,他引:2  
为了验证中国超临界水冷堆CSR1000的安全特性,评估CSR1000安全系统的性能,采用APROS程序进行了该堆型的冷段大破口失水事故分析。冷段大破口情况下,喷放阶段的显著特征是堆芯冷却剂在冷段破口喷放作用下迅速发生反向流动,热段的高温、低密度流体进入堆芯导致堆芯传热恶化,包壳温度迅速上升。自动卸压系统(ADS)阀门的启动可恢复堆芯冷却剂正向流动,有效缓解堆芯过热。高压给水箱(HFT)可提供事故早期的堆芯冷却剂供给,并为低压安注的启动提供足够的响应时间。喷放结束后,堆芯逐渐被低压安注再淹没。冷段大破口的最高包壳温度为920℃,低于安全限值(1260℃)约340℃,出现在喷放阶段。  相似文献   

11.
A simple mechanistic model is presented to evaluate the subcooled void reactivity effect under a Reactivity Initiated Accident (RIA) at cold critical condition of BWR. This model consists of a drift flux model for vapor velocity and a vapor mass conservation model with a term of vapor source on a heated wall, and it was incorporated into a homogeneous and equilibrium thermal-hydraulic code EUREKA-JINS. A sample analysis by this model showed that the subcooled void reactivity effect leads to reduction of the maximum fuel enthalpy by about 20 cal/g UO2 in the case of RIA at cold critical condition. Though the reduced value is dependent on the reactor core condition, this result indicates the significance of subcooled void reactivity effect in the accident, while the effect can be neglected in the hot stand-by case where, at most, only 4 cal/g UO2 is reduced for the maximum fuel enthalpy.  相似文献   

12.
In-pile experiments of fresh fuel rods under reactivity initiated accident (RIA) conditions have been performed in the Nuclear Safety Research Reactor at the Japan Atomic Energy Research Institute in order to understand the basic pellet cladding mechanical interaction (PCMI) behavior. Rapid fuel pellet expansion due to a power excursion would cause radial and longitudinal deformation of the cladding. This PCMI could be one of the possible incipient failure modes of an embrittled cladding of a high burnup fuel under the RIA conditions.

Basic PCMI behavior was studied by measuring cladding deformation of a fresh fuel rod without complicated irradiation effects. The transient elongation measurements of the fuel with two kinds of gap width indicated not only PCMI-induced cladding elongation, but also reduction of the pellet stack displacement by the cladding constraint. In the tests under a high-pressure and high-temperature condition simulating an operation condition of BWRs, additional ridge-type cladding deformation was generated due to the axial collapse of the cladding. A preliminary analysis for interpretation of the tests was made using a computer code for the transient analysis of fuel rods, FRAP-T6.  相似文献   

13.
Pulse irradiation experiments with irradiated ATR/MOX fuel rods of 20MWd/kgHM were conducted at the NSRR in Japan Atomic Energy Research Institute to study the transient behavior of MOX fuel rod under reactivity initiated accident conditions. Four pulse irradiation experiments were performed with peak fuel enthalpy ranging from 335 J/g to 586 J/g, resulted in no failure of fuel rods. Relatively large radial deformation of the fuel rods due to pellet-cladding mechanical interaction occurred in the experiments with peak fuel enthalpy above 500 J/g. Significant fission gas release up to 20% was measured by rod puncture measurement. The generation of fine radial cracks in pellet periphery, micro-cracks and boundary separation over the entire region of pellet were observed. These microstructure changes might contribute to the swelling of fuel pellets during the pulse irradiation. This could cause the large radial deformation of fuel rod and high fission gas release when the pulse irradiation conducted at relatively high peak fuel enthalpy. In addition, fine grain structures around the plutonium spot and cauliflower structure in cavity of the plutonium spot were observed in the outer region of the fuel pellet.  相似文献   

14.
Out-of-pile experiments were performed with Zircaloy-4 rods in subcooled water environment to study the basic phenomena occurring in the transient cooling process undergone by a fuel rod during a reactivity-initiated accident (RIA) affecting a light water reactor (LWR). The experimental results show that the cooling process of the fuel rod during an RIA can be divided into three phases separated by the quenching temperature Tq and the rewetting temperature Tq .

It is also noted from the experimental results that with increasing degree of subcooling, Tq tends to rise to levels far exceeding the maximum liquid superheat temperature of water; Tq , on the other hand, is little affected by the cooling water temperature, and remains close to that of the maximum superheat temperature.

Numerical calculations indicate conclusively that radial heat transfer to coolant water is the dominant factor that governs the transient cooling process in an RIA affecting the cold start-up of a BWR, rather than the axial heat conduction through rod which is considered to be the basic mechanism of cooling that governs the reflooding process during a LOCA.  相似文献   

15.
16.
Behavior of irradiated fuel rods under power burst conditions by accidental reactivity insertion in light water reactors (LWRs) has been studied in the Nuclear Safety Research Reactor (NSRR). In the experiments, cladding hoop deformation, which reached up to about 10%, was much larger than that of the fresh rods. The current LWR fuel behavior analysis codes, which only take account of the thermal expansion of the fuel pellets for the deformation calculation, under-predicted the plastic deformation of the cladding to be less than about 1%. Fission gas release during the pulse irradiation tests reached as high as 22% in the NSRR irradiated fuel tests. In order to describe these test results, a model of grain boundary fission gases to cause the cladding deformation has been developed and installed in a fuel behavior simulation code, FRAP-T6. In the model, the over-pressurized gases by the pulse irradiation cause grain boundary separation and stress the cladding during the tests. The model assumes that the gases remain in the fuel during the early part of pulse irradiation and are released to the open volume in the rod after the cladding deformation. The model, in combination with a fuel thermal expansion model, GAPCON, which was validated through fresh fuel tests, reproduces the NSRR test results reasonably well.  相似文献   

17.
Based on a revised version of RELAP5, which can be used for super-critical pressure calculation, a model of mixed spectrum SCWR (SCWR-M) system is established. To analyze the transient behavior of SCWR-M and develop mitigation measures during loss of flow accident (LOFA), some important parameters, e.g. reactor coolant pump (RCP) coast-down time, Reactor Pressure Vessel (RPV) upper water volume and safety injection flow, etc., are chosen for the parametric analysis. The results achieved so far indicate that the SCWR-M system design is feasible and promising. Three important mitigation measures for LOFA of SCWR-M are derived from the results: RCP coast-down time of more than 15 s, RPV upper water volume of more than 27 m3, and safety injection of more than 5% of the system design flow.  相似文献   

18.
Plasma initiated polymerization is a kind of well-known radical polymerization mechanism, but it has the 'living' polymerization feature and produces ultra-high molecular weight polymer. In order to explain such phenomena, we calculate the basic data of plasma initiated polymerization of methylmethacrylate (MMA) according to the principle of polymer physics and chemistry. It results in that the radical concentration ranges from 10^-12mol/L to 10^-16mol/L corresponding to the radical life in 10^4s to 10^8s, which means the radicals have a long lifetime. Moreover because of the long lifetime radicals it causes a unique feature rather than the common radical polymerization, and also shows no "living polymerization". It is noticed in experiments that there are two key factors playing important roles. One is the effective radical amount produced during the plasma discharging while the another is the diffusion factor.  相似文献   

19.
Fuel rod behavior under Reactivity Initiated Accident (RIA) conditions has been studied in the Nuclear Safety Research Reactor (NSRR), JAERI. In the experiments, cladding thermal behavior was observed to be influenced by the fuel pellet eccentricity to produce large azimuthal temperature variation in the cladding. The maximum azimuthal cladding temperature difference was measured to be as large as 150°C by thermocouples attached to opposite sides of the cladding around the circumference, though the thermocouples did not always detect the maximum temperature difference around the circumference. The actual temperature differences in the fuel rods subjected to less than 290 cal/g?UO2 were estimated to be 350°C at maximum based on metallographies. A simple calculation considering gap conductance variations also showed that the maximum temperature difference became 350°C under fully eccentrical condition in the fuel rod subjected to 260 cal/g?UO2. Moreover, as the rod damage such as cladding deformation, melting and failure occurs unevenly around the circumference due to the fuel pellet eccentricity in general, the fuel pellet eccentricity should influence the fuel rod failure under RIA conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号