首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
镁合金表面耐腐蚀性能、耐磨性能较差,物理气相沉积(PVD)镀膜技术是一种提高镁合金表面性能的有效方法。总结了PVD镀膜防腐蚀层和耐磨层的特性,分析了涂层耐腐蚀耐磨的机理和存在的不足。综述了镁合金表面PVD膜层的研究进展,阐述了物理气相沉积技术对镁合金的表面改性的应用现状,并对该技术在镁合金上的发展进行了概括,指出了目前PVD技术在镁合金表面防护领域的新前景,为今后PVD技术对镁合金表面防护的研究与发展提供了相关参考。  相似文献   

3.
镁合金表面耐磨涂层研究进展   总被引:1,自引:0,他引:1  
镁及其合金具有优异的物理及机械性能,从而在许多领域得到应用.但其不耐磨性限制了镁合金在汽车和航空工业中的应用.最简单且有效的解决办法是在镁合金表面施加耐磨涂层.综述了几种新的表面耐磨涂层技术,即激光表面改性涂层(激光表面重熔/激光表面合金化/激光表面熔敷)、表面纳米陶瓷涂层和微弧氧化陶瓷基涂层,并分析了它们的研究和应用前景.  相似文献   

4.
Wear and corrosion protection using Cr and CrN (PVD coating on Al and Mg) Investigations of the wear behaviour of uncoated Magnesium and Aluminium alloys (AZ 91hp, AlSi 7Mg) are showing very high wear rates of these materials. To improve the wear behaviour both materials were coated with 9 μm CrN using PVD (Physical Vapour Deposition) technology. The tribological behaviour of the coated light metals was tested afterwards by using a plate on cylinder tribometer. Looking at the results, wear is reduced enormously. The great number of defects in the coating of the magnesium alloy is showing almost no influence to the wear behaviour. The corrosion behaviour of chromium and chromium nitride coatings was tested on the magnesium alloy. Because of the defects in the coating, caused by defects like pores in the magnesium, only a short term protection of the alloy can be achieved. The corrosion behaviour of multilayer coatings is better than the behaviour of single layer coatings.  相似文献   

5.
In this study, multilayered AlN (AlN + AlN + AlN) and AlN + TiN were coated on AZ91 magnesium alloy using physical vapour deposition (PVD) technique of DC magnetron sputtering, and the influence of the coatings on the corrosion behaviour of the AZ91 alloy was examined. A PVD system for coating processes, a potentiostat for electrochemical corrosion tests, X-ray difractometer for compositional analysis of the coatings, and scanning electron microscopy for surface examinations were used. It was determined that PVD coatings deposited on AZ91 magnesium alloy increased the corrosion resistance of the alloy, and AlN + AlN + AlN coating increased the corrosion resistance much more than AlN + TiN coating. However, it was observed that, in the coating layers, small structural defects e.g., pores, pinholes, cracks that could arise from the coating process or substrate and get the ability of protection from corrosion worsened were present.  相似文献   

6.
PVD – A success story with a future PVD coatings in the range of a few nanometers up to some microns have become state of the art in engineering technology. PVD coatings can be found anywhere in our everday lives. They are used in data storage mediums such as CDs or DVDs. Car or architectural glasses are improved by thermal insulation coatings. A diffusion barrier is achieved via PVD coatings at food packaging. For decorative aspects sham jewelery and accessoires are coated as well as fittings. In the last three decades PVD coatings have been established in a variety of technical applications acquiring wear protection and/or friction reduction. First, coatings for tools have been developed, later on for components as well. So, in the past lots of experiences have been made not only in coating development, but likewise in methodical product design. By contrast, the surface has not yet been regarded as construction element. Here the knowledge is just at the beginning. The achieved performance of coated components can be improved drastically if the tribological system consisting of coating, substrate and intermediate material is designed for one single application with regard to the macro‐ and micro geometry. An exemplary application derived from the collaborative research center (SFB 442) “Environmentally friendly tribosystems” at the RWTH Aachen university is discussed. Results of fundamental research and their way into industrial applications are presented. The research development is reflected with regard to the development of the industrial PVD market. Regarding a process chain for the exemplary application the development method of surface technology is explained beginning with the production up to field testing of a new product.  相似文献   

7.
Thermal spraying of vanadium carbide reinforced iron based HVOF sprayed cermet coatings for wear protection like WC‐Co(Cr) and Cr3C2‐NiCr have found a broad range of applications in the past. By using chromium containing matrices, they exhibit good corrosion resistance along with outstanding wear resistance. In present research in the area of powder metallurgy and PTA welding iron based alloys with high content of chromium and vanadium have been developed, revealing similar properties and therefore being a cost efficient alternative to established cermet coatings. HVOF sprayed coatings of these iron based alloys are investigated regarding their economic applicability and their corrosion and wear properties.  相似文献   

8.
Zinc‐Plating of Magnesium Alloys Magnesium alloys are highly susceptible to corrosion that limits their application when exposure to corrosive service conditions is needed. One of the ways to prevent corrosion is to coat the magnesium‐based substrate to avoid a contact with an aggressive environment. Results concerning corrosion behaviour of wrought AZ31 magnesium alloy with electrolytic zinc coatings deposited from different electrolyte solutions are described. Evaluation of corrosion processes in chlorides containing solutions was performed by electrochemical measurements. It was found that thick and dense electrolytic zinc coatings formed on AZ31 significantly improve the corrosion behaviour of magnesium alloy after one hour immersion of zinc coated magnesium alloys in corrosive media. Further increase of immersion time leads to relatively fast decrease of corrosion properties. Electrolytic zinc coatings obtained in consecutive alkaline / acidic process demonstrate an improvement of corrosion resistance of coated AZ31. The time to coating degradation strongly increases.  相似文献   

9.
Layered double hydroxides (LDHs) as a class of anionic clays have extensive applications due to their unique structures. Nowadays, the emphasis is laid on the development of LDH coatings for corrosion resistance and medical applications. Thus, this review highlights synthetic methods of LDH coatings and LDH-based composite coatings on magnesium alloys. Special attention is focused on self-healing, biocompatible and self-cleaning LDH-based composite coatings on magnesium alloys.  相似文献   

10.
Erosion corrosion of graded chromium carbide coatings in multi layer structure So far PVD‐ and PECVD‐Layers have proved their value as wear protection mainly on cutting tools for machining. Depending on the composition of the layers not only a reduction in wear but also a reduction in friction is possible, e.g. by integration of hydrogen containing carbon. Furthermore such carbon containing layers use to be electrochemically inert. Thus they don’t corrode in aqueous media. Because they do also have a very dense structure, an application as corrosion protection seems to be promising. For the intended investigations under service‐like erosiv‐corrosiv loading a new testing rig was developed and constructed. The erosiv‐corrosiv loading was achieved by exposure of coated specimen to a flowing medium, that contains abrasive corund‐particles. Thus the erosion‐corrosion‐behaviour of new graded Multilayer‐Chromiumcarbide‐Coatings should be investigated. The aim was to identify the mechanisms of deterioration to promote a further developement of these layers. In addition the potential of PVD/PECVD‐coated low‐alloy steel to be in‐service under such conditions should be evaluated. For comparison an up‐to‐date industrial DLC‐coating and a high‐alloy duplex‐steel were also investigated. As a result of the conducted investigations an application of PVD‐/PECVD‐coated low‐alloy steel under erosive‐corrosive conditions with impingement wear could not yet be recommended. However the graded Multilayer‐Chromiumcarbide‐Coatings have the potential for a good erosion‐corrosion‐protection, if erosion promoting flaws are avoided. Because hard PVD‐ and PECVD‐coatings are relative brittle, a loading with hard particles, which hit the surface under a high angle, is very tough. Hence the question is, if the investigated layers possibly have a better wear behaviour under more abrasive loading in a more tangential flowing medium, which is also typical for in‐service‐conditions. This is intended to be investigated in future tests.  相似文献   

11.
Magnesium based degradable biomaterials: A review   总被引:1,自引:0,他引:1  
Magnesium has been suggested as a revolutionary biodegradable metal for biomedical applications. The corrosion of magnesium, however, is too rapid to match the rates of tissue healing and, additionally, exhibits the localized corrosion mechanism. Thus it is necessary to control the corrosion behaviors of magnesium for their practical use. This paper comprehensively reviews the research progress on the development of representative magnesium based alloys, including Mg-Ca, Mg-Sr, Mg-Zn and Mg-REE alloy systems as well as the bulk metallic glass. The influence of alloying element on their microstructures, mechanical properties and corrosion behaviors is summarized. The mechanical and corrosion properties of wrought magnesium alloys are also discussed in comparison with those of cast alloys. Furthermore, this review also covers research carried out in the field of the degradable coatings on magnesium alloys for biomedical applications. Calcium phosphate and biodegradable polymer coatings are discussed based on different preparation techniques used. We also compare the effect of different coatings on the corrosion behaviors of magnesium alloys substrate.  相似文献   

12.
物理气相沉积技术制备的硬质涂层耐腐蚀的研究进展   总被引:1,自引:0,他引:1  
张洪涛  王天民  王聪 《材料导报》2002,16(8):15-16,23
根据物理气相沉积技术制备的硬质涂层的腐蚀机制,指出提高硬质涂层的抗腐蚀性能的关键在于提高涂层的致密性和涂层/基材界面的性能,对提高硬质涂层耐蚀性的各种措施分别予以评述,提出了今后的研究方向。  相似文献   

13.
Magnesium – future material for automotive industry? Magnesium alloys show a very high potential in automotive applications as constructive metal, whereas the main focus lies on die cast parts. Electronic industry is the major commercial consumer for die castings besides the automobile industry. Room temperature applications like steering wheels and frame components in cars as well as mobile phone‐ or notebook housings are well established. These castings are produced with AZ‐ or AM‐magnesium alloys, which show good room temperature properties and a good castability. The great alloy development challenge in extending the use of magnesium cast alloys are application for higher temperatures. The application in powertrain components is considered to be the benchmark here. Besides alloy development there are also further research activities in development of casting processes. Semi‐solid processes like New‐Rheocasting (NRC), Thoxomolding ? or Thixocasting (TC) are adapted to the requirements of newly developed alloys. Not only cast alloys but also magnesium wrought alloys have moved to the centre of interest in the last decade. Alloy development for improving the formability on the one hand as well as process development in extrusion or rolling has to be done in order to find optimum parameters for deforming magnesium alloys properly.  相似文献   

14.
钛合金激光熔覆的研究现状与发展趋势   总被引:5,自引:0,他引:5  
牛伟  孙荣禄 《材料导报》2006,20(7):58-60,68
钛合金具有高比强、良好的耐蚀性能等优点,但其耐磨性差,限制了它在摩擦机构的应用.激光熔覆技术是近年来发展起来的一种新型表面改性工艺.在钛合金表面进行激光熔覆,可提高钛合金的表面性能,获得高硬度、耐磨性能好、低摩擦系数的熔覆层.简要阐述了钛合金表面激光熔覆的研究现状,包括激光熔覆工艺、熔覆层的组织与性能,指出了存在的问题,并展望了钛合金激光熔覆的发展方向.  相似文献   

15.
Plasma transferred arc (PTA) welded Ni and Co‐based alloys have gained high acceptance in many industrial applications for the wear protection of components. Recently, the cost of nickel and cobalt is rising drastically. This paper presents the development of a cost‐effective high chromium and vanadium containing iron‐based hardfacing alloy with high hardness and wear resistance. The welding processing of the alloy is carried out by PTA welding of atomized powders. Investigations on powder production as well as on weldability are presented. The coatings are metallographically studied by optical microscopy, SEM, EDX and micro‐hardness measurements. The wear resistance properties of the coatings are examined using pin on disk, dry sand rubber wheel and Miller testing, the corrosion properties are determined by immersion corrosion tests. The newly developed iron‐based alloy has nearly the same wear resistance as Ni‐based alloys with fused tungsten carbides at a higher level of corrosion resistance and much lower cost.  相似文献   

16.
Laser gas alloying – manufactoring process for wear resistant layers on titanium alloys Titanium alloys combine very high specific strength with biocompatibility and corrosion resistance. Because of these excellent properties they were frequently used in space travel, aeronautics, chemical industry, medicine and, increasingly, automotive industry. A handicap of titanium alloys is their low wear resistance against abrasive and sliding wear. Additional applications for titanium alloys can be established by increasing their wear resistance High loadable and wear resistant layers on titanium alloys are generated by the new method for laser gas alloying, developed at the Fraunhofer IWS Dresden. The new method overcomes drawbacks of conventional methodes and is a reliable process for industrial application. By a hard amorphous carbon layer (DLC), deposited by Laser-Arc, an additional increase of sliding wear resistance is possible. First we briefly present the methode itself. The enormous increase of wear resistance is proven with the help of diverse wear tests.  相似文献   

17.
镁及其合金表面防护性涂层国外研究进展   总被引:21,自引:4,他引:21  
综述了近年来国外镁及其合金表面防护性涂层的研究进展,其中包括化学转化涂层、阳极氧化膜层、镀层(电镀、化学镀)、扩散膜层、激光表面合金改性层、气相沉积层及有机涂层等在镁合金基体上的应用情况,分析了其各自的利弊,并对镁合金表面防护技术的发展方向进行了展望.  相似文献   

18.
The application of PVD coatings for wear protection of tools is well known. Since many years, TiN coated cutting and forming tools are state of the art. In contrast, the application of PVD coatings on machine parts is not standard today. This is caused by the problems of coating deposition on components as well as the fact that wear protection and corrosion protection is demanded for many parts with longer lifetime. TiN produced by means of PVD technique is good for wear protection, but with respect to corrosion there are problems. On the other hand electropolated chromium is a reliable coating to resist corrosion, but wear resistance is limited. PVD CrxN coatings promise to combine the advantages of hard coatings and electropolated chromium. The present study focuses on the corrosion properties of magnetron sputtered CrxN coatings. Different types of coatings on steel substrates with various amounts of nitrogen were investigated in order to take into account aspects of coating deposition resp. coating material, coating structure and coating morphology. Additionally several graded and multilayer coatings were studied to show influences of coating system design. Electroplated hard chromium was used as reference material for corrosion resistance. To explain the corrosion behaviour, crystallographic phases and structure of coatings were analysed by X‐ray diffraction and morphology by SEM. It could be shown that the corrosion behaviour depends on all these parameters and that 8 μm chromium nitride provides the same corrosion protection as 48 μm electroplated chromium.  相似文献   

19.
Growth defects are present in all PVD hard coatings. They have detrimental influence on their tribological properties (higher sticking of workpiece material, higher friction coefficient, worse corrosion resistance, higher gas permeation). In order to improve the tribological properties of PVD hard coatings it is important to minimize the concentration of growth defects. Conventional TiAlN single layer as well as AlTiN/TiN and TiAlN/CrN nanolayer coatings were deposited on cemented carbide, powder metallurgical high speed steel (ASP30) and cold work tool steel (D2) by magnetron sputtering in the CC800/7 and CC800/9 sinOx ML (CemeCon) deposition systems, respectively. The surface morphology of the coated substrates was examined by scanning electron microscope (FE-SEM) in combination with focused ion beam (FIB), and 3D stylus profilometer. By means of 3D-profilometry we performed several measurements and detailed analysis on a series of samples from the several hundred production batches. The influence of growth defects on GDOES (glow-discharge optical emission spectrometry) depth resolution and pitting corrosion was also studied.  相似文献   

20.
Development and evaluation of coatings for lubricant free forming of high strength aluminium Many applications in light weight construction require massive formed high strength aluminium parts. For economical and ecological reasons the use of lubricants for massive forming has to be avoided. Both, lubricant free forming and processing of high strength materials are big challenges that can be realized by using coated tools with functional surfaces that show high wear resistance, low friction and low adhesion to aluminium [1–7]. For goal‐oriented surface engineering different coating technologies, such as Physical Vapour Deposition (PVD) and Chemical Vapour Deposition (CVD) have been used for the preparation of specimens. The coating properties are evaluated by mechanical tests and numeric simulation to investigate the massive forming processes and the coating‐substrate‐behaviour. On the base of TiCN‐, TiC‐TiN‐ and DLC‐coatings on steel it is shown how relevant coating properties like Young’s Modulus, crack behaviour and hardness can be analyzed with regard to small coating thicknesses. In order to scale up the results to industrial conditions, finally the simulation is correlated to real deforming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号