首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenolic compounds have been identified as the most common allelochemicals produced by higher plants. Inhibitions of cinnamic acid, its related phenolic derivatives, and abscisic acid (ABA) on seedling growth and seed germination of lettuce were studied.trans-Cinnamic acid, ando-,m-, andp-coumaric acids inhibited the growth of etiolated seedlings of lettuce at concentrations higher than 10–4 M and seed germination above 10–3 M. Coumarin inhibited seedling growth and seed germination at 10–5 M or above. Chlorogenic acid inhibited seedling growth above 10–4 M, but did not inhibit seed germination at 10–5–5×10–3 M. Low concentrations (below 10–3 M) of caffeic and ferulic acids promoted the elongation of hypocotyls, but higher concentrations (over 10–3 M) inhibited seedling growth and seed germination. These phenolic compounds and abscisic acid had additive inhibitory effects both on seedling growth and seed germination. The inhibition on lettuce was reversed by caffeic and ferulic acids at concentrations lower than 10–3 M except for the inhibition of germination by coumarin. These results suggest that in naturetrans-cinnamic acid,o-, m-, p-coumaric acids, coumarin, and chlorogenic acid inhibit plant growth regardless of their concentration. However, caffeic and ferulic acids can either promote or inhibit plant growth according to their concentration.  相似文献   

2.
The germination rates of cotton and wheat seeds were significantly affected by various extracts of wheat mulch and soils collected from the wheat field. This toxicity was even more pronounced against seedling growth. Five allelochemics: ferulic,p-coumaric,p-OH benzoic, syringic, and vanillic acids, were identified from the wheat mulch and its associated soil. Quantitatively, ferulic acid was found at higher concentrations thanp-coumaric acid in the soil. Various concentrations of ferulic andp-coumaric acids were toxic to the growth of radish in a bioassay. The functional aspects of allelochemic transfer from decaying residue to soil and the subsequent microbial degradation within agroecosystems are discussed, particularly as they relate to wheat crop rotation, with wheat and cotton, in Pakistan.  相似文献   

3.
Both the neutral and acidic fractions of the acetone extract of yellow fieldcress (Kireha-inugarashi,Rorippa sylvestris Besser) inhibited lettuce seed germination. Salicylic,p-hydroxybenzoic, vanillic, and syringic acid were identified in the acidic fraction. In the neutral fraction, hirsutin (8-methylsulfinyloctyl isothiocyanate), 4-methoxyindole-3-acetonitrile, and pyrocatechol were identified. Bioassay using a root exudate recirculating system showedR. sylvestris during flowering inhibited the lettuce seedling growth. Hirsutin (13g/plant/day) and pyrocatechol (9.3g/plant/day) were the major compounds released into the rhizosphere. Several combinations of pyrocatechol,p-hydroxybenzoic acid, vanillic acid, and hirsutin reduced lettuce seedling growth. These compounds seemed to be allelochemicals.  相似文献   

4.
In earlier work, we found thatPolygonum aviculare had pronounced allelopathic effects against several test species. Four inhibitors were isolated from livingPolygonum plants, three of which were glucosides. Four different inhibitors were isolated fromPolygonum residues and soil underPolygonum stands, and none of these occurred in soil fromCynodon dactylon (L.) Pers. stands. Three of these were glycosides containing both fructose and cellobiose as the sugars. Color reactions of all the inhibitors indicated that they are phenolic in nature. All the inhibitors reduced seed germination and/or seedling growth ofChenopodium album L. Moreover some of them inhibited growth of different strains ofRhizobium andAzotobacter.  相似文献   

5.
The aqueous extracts of leaves, stems, and roots ofCoffea arabica significantly inhibited the seed germination and radicle growth of rye grass, lettuce, and fescue. When the extracts were diluted to 1% solution, significant suppression of lettuce growth was still found and was particularly pronounced in the extract of young seedlings. The paper chromato-gram of the ether fraction of an aqueous extract of coffee leaves was bioassayed with lettuce seeds and revealed a remarkable inhibition throughout the chromatogram except for the segment ofR f 0.00–0.12. Paper without spotting extract was used as a standard. The phytotoxins present in coffee tissue were identified by paper and thin-layer chro-matography and mass spectrometry. The compounds include caffeine, theobromine, theophylline, paraxanthine, scopoletin, and chlorogenic, ferulic,p-coumaric,p-hydroxybenzoic, caffeic, and vanillic acids. All compounds except caffeic acid exhibited significant phytotoxicity to lettuce growth at a concentration of 100 ppm.Paper no. 222 of the Scientific Journal Series, Institute of Botany, Academia Sinica, Taiwan, and Journal Article 3582 of the Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma. The abstract was published in the Proceedings of 63rd Annual Meeting of American Societies for Experimental Biology, held on April 1–10, 1979, Dallas, Texas.  相似文献   

6.
Leaf extracts ofBunias orientalis were shown to inhibit seed germination of a variety of cultivar plant species and of species cooccurring withB. orientalis in the field. Root exudate solutions and leaf litter leachates ofB. orientalis were tested for their allelopathic activity using seedling growth assays. Additionally, in comparative seedling growth assays soil cores removed from denseB. orientalis stands were tested bimonthly for elevated allelopathic effects. The impact of root exudates on seedling growth was generally weak and varied between species. Similar results were obtained for the effect ofB. orientalis leaf litter leachates on seedlings grown in sand culture relative to the effect of leaf litter leachates of a plant species mixture. When soil as a growth substrate was used, no consistent differences in seedling growth were obtained between the two litter leachate treatments. In the soil core experiment seedlings grown in soil cores collected from a denseB. orientalis stand unexpectedly showed better performance than seedlings grown in soil cores collected from a nearby mixed plant stand withoutB. orientalis, at least in early spring and late autumn. Predominating nutrient effects are, therefore, assumed to conceal a potentially increased allelopathic effect of soil beneath denseB. orientalis stands. It is concluded that other factors than allelopathy must be investigated to explain the rapid establishment of dense stands of this alien plant species.  相似文献   

7.
Polygonum aviculare was observed to spread rapidly into heavy stands ofCynodon dactylon (L.) Pers. resulting in death of the latter. This indicated a strong interference againstCynodon dactylon. Measurements of selected soil minerals and physical factors indicated that competition was probably not the chief cause of that interference. Soil collected under deadPolygonum was very inhibitory to all test species exceptSporobolus pyramidatus (Lam.) Hitchc., suggesting the presence of inhibitory compounds. Tops and roots ofPolygonum, root exudates, and leachate of the tops inhibited seed germination and seedling growth of most test species. Therefore, allelopathy apeared to be the dominant component of the interference, with competition probably accentuating its effects.Polygonum aviculare was inhibitory toGossypium barbadense L. andSorghum bicolor (L.) Moench, indicating that allelopathy is an important component of the interference byPolygonum against crop yields.  相似文献   

8.
Field observations indicated thatEuphorbia prostrata strongly interferes withCynodon dactylon (L.) Pers. Analysis of some physical and chemical soil factors indicated that competition was not the dominant factor of that interference. Soil collected from underE. prostrata stands was very inhibitory to seed germination and seeding growth of some of the test species including C.Dactylon. This suggests the presence of inhibitory compounds in soil ofE. prostrata stands. Subsequent experiments showed that aqueous extract, decaying residues, and root exudates ofE. prostrata were inhibitory to most of the test species including C.Dactylon. Thus, it appears that allelopathy is the major component of the interference, with competition probably accentuating its effect. It also was found that allelopathy is an important component of the interference byE. prostrata againstAmaranthus retroflexus, Medicago sativa, andGossypium hirsutum.  相似文献   

9.
The aqueous extracts of decomposing rice residues in soil exhibited inhibition on the radicle growth of lettuce and rice seeds and the growth of rice seedlings. The phytotoxicity was found in extracts obtained from the early stage of decomposition (first month), and gradually declined thereafter. The inhibition was also found in extracts obtained from rice fields, and was persistent for 4 months. The root initiation of hypocotyl cuttings of mungbeans was suppressed by extracts of decaying rice residues and extracts obtained from paddy soil. Five phytotoxins,p-hydroxybenzoic,p-coumaric, vanillic, ferulic, ando-hydroxyphenylacetic acids, and several unknowns were found in the decomposing rice residues under waterlogged conditions. At 25 ppm,o-hydroxyphenylacetic acid revealed significant inhibition on the radicle growth of rice and lettuce seeds and suppressed root initiation of mungbean seedlings. It was concluded that the growth of rice seedlings was retarded by decaying rice residues in soil; thus, this appeared to be an autointoxication phenomenon.Paper No. 176 of the Scientific Journal Series, Institute of Botany, Academia Sinica. This study was financially supported by the National Science Council, the Republic of China.  相似文献   

10.
l-Tryptophan caused growth inhibition of roots and hypocotyls (or coleoptiles) of cockscomb (Amaranthus caudatus L.), lettuce (Lactuca sativa L.), cress (Lepidium sativum L.), timothy (Phleum pratense L.), rice (Oryza sativa L.), wheat (Triticum aestivum L.), and oat (Avena sativa L.), increasing the dose ofl-tryptophan increased the inhibition. The concentrations for 50% inhibition of the root growth were 0.14, 0.15, 0.21, 0.79, 0.95, 1.7, and 2.4 mM for cockscomb, cress, lettuce, timothy, rice, wheat, and oat, respectively; the concentrations for 40% inhibition of the hypocotyl (or coleoptile) growth were 0.28, 0.33, 0.43, 2.7, 4.5, 7.2, and 15 mM for cockscomb, cress, lettuce, timothy, rice, wheat and oat, respectively. The levels ofl-tryptophan in oat seedlings and in its root exudates were 29.3 mg/kg fresh wt and 0.25 mM under light conditions, and 21.1 mg/kg fresh wt and 0.18 mM under dark conditions, respectively. The presence ofl-tryptophan in the root exudates coupled with its effect on growth suggested thatl-tryptophan may play an important role in the growth inhibition of other plants in nature.  相似文献   

11.
Noninhibitory levels of glucose-C [ 72 µg carbon (C)/g soil] increased the inhibitory activity ofp-coumaric acid on morning-glory seedling biomass accumulation in Cecil Bt-horizon soil. The amount ofp-coumaric acid required for a given level of inhibition of shoot and seedling biomass accumulation decreased as the concentration of glucose increased. Soil extractions with neutral EDTA (0.25 M, pH 7) after addition of combinations ofp-coumaric acid and glucose (concentrations ranging from 0 to 1.25 µmol/g soil) to the soil showed that utilization ofp-coumaric acid by microbes decreased linearly as the concentration of glucose increased. The increased inhibitory activity of a given concentration ofp-coumaric acid in the presence of glucose was not due to a reduction in soil sorption ofp-coumaric acid or effects of nitrogen-limited microbial growth. Noninhibitory levels of phenylalanine andp-hydroxybenzoic acid slowed the utilization ofp-coumaric acid by microbes in a similar manner as glucose. The presence of methionine, however, did not affect the rate ofp-coumaric acid utilization by microbes. These observations suggest that differential utilization of individual molecules in organic mixtures by soil microbes can modify, and in this case increase, the effectiveness of a given concentration of an inhibitor such asp-coumaric acid on the inhibition of seedling growth such as morning-glory.The use of trade names in this publication does not imply endorsement by the United States government or the North Carolina Agricultural Research Service of products named, nor criticism of similar ones not mentioned.  相似文献   

12.
Pinus ponderosa accounted for more than 98% of all tree and shrub stratum stems in a climax community with low herb coverage and aboveground biomass, 35% and 60 g/m2, respectively. Because of our previous report that nitrification and nitrifying bacteria in the same community were allelopathically inhibited, we speculated that the pine-produced allelochemics might also directly influence the development and growth of the herb stratum. In most cases decaying needles, needle leachate, and field soils significantly reduced germination and radicle growth ofAndropogon gerardii andA. scoparius, pine-associated herbaceous species. Additionally, growth ofAndropogon scoparius seedling radicles was reduced 28–56% by pine needle extracts, 33% by pine bark extracts, and 67% by soil hydrolysate extracts.Andropogon seed germination was reduced 20–25% by pine needles and soil. Phytotoxins identified in various plant parts and associated soils were caffeic acid, chlorogenic acid, quercetin, and condensed tannins. Pine needle water and soil hydrolysate extracts were most inhibitory to the radicle growth of the test species. Thus it appears that the limited growth of the herbaceous stratum in the pine community may be accounted for, in part, by allelopathy. Such allelopathic interactions may have an adaptive ecological significance in various forest and other plant communities.  相似文献   

13.
Black cherry (Prunus serotina Ehrh.) seedlings survive and grow poorly under dense hay-scented fern (Dennstaedtia punctilobula Michx.) ground cover in the understory of partially cut Allegheny hardwood stands. Previous field studies showed that there were about 80% fewer black cherry seedlings where fern was present than where it was absent. Allelopathic interference with black cherry seed germination, seedling survival, and growth by hay-scented fern foliage leachates, root washings, and soil transformation products was evaluated in a series of field, greenhouse, and laboratory experiments. Black cherry seeds germinated as well in the presence of hay-scented fern or its leachates as when they were absent in both the laboratory and the field. Fern foliage leachates and root washings did not affect black cherry growth in sand or natural soil cores in the greenhouse. There also was no evidence that hay-scented fern natural products or their soil transformation products built up in the soil. A two-year manipulative field experiment to separate effects of hay-scented fern foliage shade from foliar leaching showed that foliage shade significantly reduced black cherry seedling survival and growth; foliage leachates had no effect. Results of the studies led to the conclusion that allelopathy does not play a direct role in hay-scented fern interference with black cherry seedling establishment in partially cut Allegheny hardwood stands.  相似文献   

14.
Distribution and Exudation of Allelochemicals in Wheat Triticum aestivum   总被引:8,自引:0,他引:8  
Wheat allelopathy has potential for weed suppression. Allelochemicals were identified in wheat seedlings, and they were exuded from seedlings into agar growth medium. p-Hydroxybenzoic, trans-p-coumaric, cis-p-coumaric, syringic, vanillic, trans-ferulic, and cis-ferulic acids and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) were identified in both the shoots and roots of 17-day-old wheat seedlings and their associated agar growth medium. Wheat accessions with previously identified allelopathic activity tended to contain higher levels of allelochemicals than poorly allelopathic ones. The allelopathic compounds present in the shoots generally also were identified in the roots and in the agar medium. Allelochemicals were distributed differentially in wheat, with roots normally containing higher levels of allelochemicals than the shoots. When the eight allelochemicals were grouped into benzoic acid and cinnamic acid derivatives, DIMBOA, total coumaric, and total ferulic acids, the amount of each group of allelochemicals was correlated between the roots and the shoots. Most of the allelochemicals identified in the shoots and roots could be exuded by the living roots of wheat seedling into the agar growth medium. However, the amounts of allelochemicals in the agar growth medium were not proportional to those in the roots. Results suggest that wheat plants may retain allelochemicals once synthesized. The presence of allelochemicals in the agar growth medium demonstrated that wheat seedlings were able to synthesize and to exude phytotoxic compounds through their root system that could inhibit the root growth of annual ryegrass.  相似文献   

15.
The volatile constituents ofArtemisia princeps var.orientalis (wormwood) were investigated for phytotoxic and antimicrobial activities. The germination and radicle elongation of receptor plants were inhibited by volatile substances emitted from wormwood leaf and effects were concentration-dependent. Essential oil of the plant extracted by Karlsruker's apparatus suppressed seed germination and seedling elongation of the receptor plants at a threshold concentration of 4.8l/100 ml.Escherichia coli was not susceptible to the wormwood essential oil, but the growth ofBacillus subtilis, Aspergillus nidulans, Fusarium solani, andPleurotus ostreatus was inhibited severely.  相似文献   

16.
Hydroxamic acids (Hx) produced by some cereal crops have been associated with allelopathy. However, the release of Hx to the soil by the producing plant-an essential condition for a compound to be involved in allelopathy-has not been shown. GC and HPLC analysis of roots and root exudates of wheat (Triticum aestivum L.) and rye (Secale cereale L.) cultivars, with high Hx levels in their leaves, demonstrated the presence of these compounds in the roots of all cultivars analyzed and in root exudates of rye. Moreover, bioassays employing root exudates collected from wheat and rye seedlings demonstrated that only rye exudates inhibited root growth of wild oats,Avena fatua L., a weed whose root growth is inhibited by Hx. These results suggest that rye could potentially interfere with the growth ofAvena fatua in nature and that this interference could be due to the release of Hx to the soil by way of roots.  相似文献   

17.
The phytotoxic properties of nordihydroguaiaretic acid (NDGA) isolated from creosote bush,Larrea tridentata (Zygophyllaceae), were examined. NDGA dramatically reduces the seedling root growth of barnyard grass, green foxtail, perennial ryegrass, annual ryegrass, red millet, lambsquarter, lettuce, and alfalfa, and reduces the hypocotyl growth of lettuce and green foxtail. It has no effect on the germination of lettuce seeds. NDGA almost certainly contributes to the observed allelopathic nature of creosote bush.Work performed during sabbatical year leave at Western Regional Research Center.  相似文献   

18.
Allelopathic research of subtropical vegetation in Taiwan   总被引:2,自引:0,他引:2  
Leucaena leucocephala plantations in Kaoshu, southern Taiwan, exhibit, after several years of growth, a unique pattern of weed exclusion beneathLeucaena canopy. The pattern has been observed in manyLeucaena plantations in Taiwan and is particularly pronounced in the area where a substantial amount ofLeucaena litter has accumulated on the ground. Field data showed that the phenomenon was primarily not due to physical competition involving light, soil moisture, pH, and nutrients. Instead, aqueous extracts ofLeucaena fresh leaves, litter, soil, and seed exudate showed significantly phytotoxic effects on many test species, including rice, lettuce,Acacia confusa, Alnus formosana, Casuarina glauca, Liquidambar formosana, andMimosa pudica. However, the extracts were not toxic to the growth ofLeucaena seedlings. The decomposing leaves ofLeucaena also suppressed the growth of the aforementioned plants grown in pots but did not inhibit that ofLeucaena plants. By means of paper and thin-layer chromatography, UV-visible spectrophotometry, and high-performance liquid chromatography, 10 phytotoxins were identified. They included mimosine, quercetin, and gallic, protocatechuic,p-hydroxybenzoic,p-hydroxyphenylacetic, vanillic, ferulic, caffeic, andp-coumaric acids. The mature leaves ofLeucaena possess about 5% dry weight of mimosine, the amount varying with varieties. The seed germination and radicle growth of lettuce, rice, and rye grass were significantly inhibited by aqueous mimosine solution at a concentration of 20 ppm, while that of the forest species mentioned was suppressed by the mimosine solution at 50 ppm or above. However, the growth ofMiscanthus floridulus andPinus taiwanensis was not suppressed by the mimosine solution at 200 ppm. The seedlings ofAgeratum conzoides died in mimosine solution at 50 ppm within seven days and wilted at 300 ppm within three days. It was concluded that the exclusion of understory plants was evidently due to the allelopathic effect of compounds produced byLeucaena. The allelopathic pattern was clearly shown in the area with a heavy accumulation ofLeucaena leaf litter, which was a result of drought and heavy wind influence.Paper No. 292 of the Scientific Journal Series of the Institute of Botany, Academia Sinica, Taipei, Taiwan. This study was supported in part by a grant to C.H. Chou. Part of this paper was a MS thesis submitted by Y.L. Kuo to the Department of Forestry, National Taiwan University, and presented at the Seminar on Allelochemicals and Pheromones, sponsored by the CCNAA and AIT on June 21–26, 1982.  相似文献   

19.
On many hillsides of Taiwan there is a unique pattern of weed exclusion byPhyllostachys edulis (bamboo) andCryptomeria japonica (conifer) in which the density, diversity, and dominance of understory species are very different. Although the physical conditions of light, soil moisture, and soil nutrients strongly favor the growth of understory in a bamboo community, the biomass of its undergrowth is significantly low, indicating that physical competition among the understory species in the bamboo and conifer communities does not cause the observed differences. However, the biochemical inhibition revealed by these two plants appeared to be an important factor. The growth ofPellionia scabra seedlings, transplanted from the study site into greenhouse pots, was evidently suppressed by the aqueous leachate of bamboo leaves but was stimulated by that of conifer leaves. The radicle growth of lettuce, rye grass, and rice plants was also clearly inhibited by the leachate and aqueous extracts of bamboo leaves but not by those of conifer leaves. Six phytotoxins,o-hydroxyphenylacetic,p-hydroxybenzoic,p-coumaric, vanillic, ferulic, and syringic acids were found in the aqueous leachate and extracts of leaves and alcoholic soil extracts ofP. edulis, while the first three compounds were absent in the extracts ofC. japonica. The phytotoxicities of extracts were correlated with the phytotoxins present in both leaves and soils. The understory species might be variously tolerant to the allelopathic compounds produced by the two plants, resulting in a differential selection of species underneath. Therefore, comparative allelopathic effects ofPhyllostachys edulis andCryptomeria japonica may play significant roles in regulating the populations of the understories.Paper No. 253 of the Scientific Journal Series of the Institute of Botany, Academia Sinica, Taipei, Taiwan. This study was supported by the National Science Council of the Republic of China.  相似文献   

20.
Chloroform extract of the aerial parts ofEupatorium adenophorum Spreng was fractionated and examined for growth inhibition. Bioassay-directed fractions of the plant materials afforded three known cadinenes and -sitosterol. The effects of different fractions as well as isolated cadinenes were determined usingAllium cepa, Raphanus sativus, andCucumis sativus seeds. Three-day exposure to these cadinenes significantly inhibited germination and seedling growth of all three assay seeds. The degree of inhibition was dependent upon seed species and the concentrations of the compounds tested. Cadinene(1) was found to be more inhibitory to the seeds tested and the activity of the cadinene(3) was less than that of(1) and(4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号