首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
详细介绍了CO2驱油过程中沥青质沉积对油田开发效果的影响。室内实验采用7块渗透率相近的人造岩心,研究了不同CO2注入压力下的采收率、沥青质沉积量、岩心渗透率的变化情况。结果表明:煤油和模拟油采收率均随注入压力的增加而提高。在CO2驱油过程中,部分沥青质沉积在岩心中,两种油样的采收率差值随着注入压力的升高先增加后降低,在25MPa时最大,为18.8%。随着CO2注入压力的增加,沥青质沉积量和岩心渗透率降幅先增加后减小。在注入压力为28MPa时,沥青质沉积量最大,为45.53%,岩心渗透率也降至最低,降幅达27.9%。沉积量主要受沉积效应和溶解效应的综合影响。  相似文献   

2.
为揭示CO_2驱过程中沥青质沉积量对致密砂岩油藏采收率的影响机理,选取3种不同沥青质含量的原油样品及相同渗透率的石英砂环氧树脂胶结人造岩心,模拟实际地层的温度、压力进行室内驱替实验,并通过核磁共振技术分析沥青质沉积对不同尺度孔喉中原油采收率的影响。实验结果表明:原油中沥青质含量越大,驱替过程中其沉积量越大;同时,岩心样品中的沥青质沉积量也随着CO_2注入量的增加而增加;驱替实验的最终采收率受沥青质沉积量的影响,沉积量越大,采收率越低。核磁共振技术测试结果表明,沥青质沉积对较大孔喉(2.0~200.0 ms)的采收率无明显影响。但是,对于较小孔喉(0.1~2.0 ms),沥青质沉积会产生一定程度的堵塞效应,导致剩余油难以采出,最终影响整体的采收率。  相似文献   

3.
明确CO2注入对储层多孔介质及赋存流体性质的影响规律是分析油藏条件下CO2驱油机理和确定提高采收率潜力的基础。开展了不同压力条件下CO2与岩心静态接触实验和岩心驱替实验,测试了CO2注入前后岩心物性及微观孔喉结构和地层流体主要离子含量、采出原油组分、黏度及其沥青质含量等特征参数。实验结果表明:CO2注入压力由5 MPa升至20 MPa过程中,储层多孔介质平均孔隙度增大19.16%,平均渗透率降低11.23%,直径为100~150μm的孔隙空间增加9.73%,直径小于1.5μm的喉道空间增加15.83%,岩心亲水性显著增强;随着CO2在不同压力下的逐渐注入,地层水中Ca^2+和HCO-3含量增大,采出原油中C 5~C 33组分含量呈现先增大后基本不变的规律,采出原油黏度及其沥青质含量呈现先迅速降低,后保持不变的规律。  相似文献   

4.
注CO2 引起的原油沥青质沉积对致密储层造成的伤害严重影响其开发效果。为明确不同CO2 注入方式下 的沥青质沉积特征及其对储层渗透率的影响,对致密岩心分别进行了CO2 驱替和吞吐两种注入方式的实验,通 过核磁共振和扫描电镜等,分析了两种注入方式下的沥青质沉积特征、原油采出程度以及对致密岩心渗透率的影响。结果表明,两种CO2 注入方式下的致密岩心均会产生沥青质沉积,且主要以膜状吸附的方式沉积在孔隙表面。受CO2 与原油相互作用时间的影响,吞吐方式下的沥青质沉积量大于驱替方式,且吞吐方式下的沉积孔 径范围高于驱替方式。沥青质沉积对致密岩心渗透率的伤害程度与原油的产出方向有关。驱替方式下沥青质 沉积对岩心正向(CO2 注入方向)渗透率的伤害程度较大,而吞吐方式下沥青质沉积对岩心逆向渗透率的伤害程 度较大。在围压为10、5MPa时,CO2 驱替和吞吐方式下的沥青质沉积对岩心正向渗透率的伤害程度(正向渗透 率平均降幅)分别为7.05%和1.67%,对岩心逆向渗透率的伤害程度(逆向渗透率平均降幅)分别为0.41%和 2.66%。受注采模式和流动机制的影响,CO2 吞吐方式下的采出程度低于驱替方式。研究结果对于致密储层CO2 驱沥青质沉积不同方向上储层伤害程度的认识及注入方式的优选具有一定的指导意义。  相似文献   

5.
为了揭示CO2驱替过程中沥青质沉积对致密储层的伤害机理,文中基于岩心核磁共振T2谱测试原理,开展了CO2注入压力下的岩心驱替实验,研究了沥青质在岩心中的沉积特征,评价了沥青质沉积对储层的伤害程度。实验结果表明:沥青质沉积量和渗透率伤害率随着CO2注入压力的升高呈现先快速上升后趋于平缓的趋势;在CO2注入过程中,沥青质主要沉积在弛豫时间大于10 ms的大、中孔隙,导致大、中孔隙占比下降,微细、小孔隙占比增加,且随着CO2注入压力的升高,大、中孔隙占比下降幅度增大,微细、小孔隙占比上升幅度增大;此外,沥青质沉积会引起润湿性发生反转,随着沥青质沉积量的增加,润湿反转指数增大,岩心润湿性不断向强油湿方向转变。  相似文献   

6.
王千  杨胜来  拜杰  赵卫  李佳峻  陈浩 《石油学报》2021,42(5):654-668,685
注CO2提高储层原油采收率过程中,储层中流体的渗流和分布受岩石孔喉结构控制,且注入的CO2会引发原油中的沥青质沉淀,导致储层渗透率下降并改变储层的润湿性.通过在4块渗透率相似但孔喉结构不同的岩心上进行的混相和非混相的CO2驱油实验研究了 CO2驱油过程中岩石孔喉结构对储层岩石物性变化的影响.基于岩石孔径分布和压汞曲线,...  相似文献   

7.
石磊 《油田化学》2022,39(2):343-348
针对注CO2提高原油采收率过程中易产生沥青质沉积的现象,以致密砂岩天然岩心和储层原油为研究对象,利用CO2吞吐以及核磁共振等实验手段,开展了致密砂岩油藏CO2吞吐过程中沥青质沉积对储层的伤害特征研究。实验结果表明:原油的沥青质含量越高,CO2吞吐过程中沥青质的沉积率越大;随着实验压力的升高,沥青质沉积率先增大后减小,当压力为25 MPa时,沥青质沉积率最大;CO2吞吐过程中沥青质沉积对储层渗透率的伤害程度较大,而对孔隙度的伤害程度则相对较小;沥青质主要沉积在大孔隙中,且油样中沥青质的含量越高,对岩心大孔隙的堵塞程度就越大;沥青质沉积可以使岩心进口端面的润湿性由亲水性向亲油性转变;沥青质沉积会影响CO2吞吐实验的采收率,沥青质含量越高,采收率越小。在致密砂岩油藏注CO2吞吐过程中,应采取相应的抑制沥青质沉积措施,以提高CO2吞吐措施的效果。  相似文献   

8.
针对塔河油田注N_2提高采收率中可能发生沥青质沉积伤害储层的问题,通过注气相态分析和黏度测试分析了注N_2对原油组分、性质的影响,采用岩心驱替装置通过注气吞吐沥青质沉积实验研究了注N_2对储层渗透率的影响,以裂缝性岩心缝宽为指标评价了沥青质沉积对储层的伤害程度,提出了减少沥青质沉积的措施。研究结果表明,注N_2吞吐会破坏原油的原有平衡状态,使油中重质组分含量增加,轻质组分减小,原油黏度增大;注气轮次、裂缝宽度和生产井井底流压均会影响沥青质的沉积程度,井底流压高于饱和压力时沥青沉降情况不明显,井底流压低于饱和压力时沥青质沉积程度增大。在现场注气生产中应保持合理的生产压差预防沥青质沉积,选择合适的化学解堵剂有效解除沥青质堵塞。  相似文献   

9.
沥青质沉积对轻质油藏CO2驱的影响   总被引:1,自引:0,他引:1  
为了解沥青质沉积对轻质油藏CO_2驱的影响,以CO_2及延长轻质原油为介质,在不同压力、不同CO_2与原油物质的量比的实验参数下,研究了CO_2对沥青质的沉积规律以及沥青质沉积对油水界面性质、原油组成、储层渗透率及采收率的影响。研究结果表明:当压力从0 Pa升至20 Pa时,沥青质沉积量从0.17%增至6.27%;沥青质沉积导致的储层渗透率损害程度从1.87%增至13.64%,油水界面张力原来的2.40 mN/m增至16.80 mN/m。压力在25 MPa时原油采收率最大,达到11.83%。  相似文献   

10.
为明确均匀沥青质沉积下的储层伤害特征及机理,通过岩心真空饱和原油的实验,建立均匀沥青质岩心沉积方法,开展正向水驱及反向水驱实验分析均匀沥青质下储层油水渗流规律。结果表明:与直接饱和法相比,真空饱和法的岩心中沥青质沉积量大且分布均匀,对岩心绝对渗透率伤害小于对两相相对渗透率伤害,残余油饱和度增大了28.6%,油水两相共渗区收窄且向左偏移,油相相对渗透率降低了15.5%,水相相对渗透率提高了33.2%,但最大水相相对渗透率则下降了19.5%;储层伤害方式包括孔喉堵塞和表面沉积引起的润湿性和孔喉半径变化,孔喉堵塞对绝对渗透率的影响大于相对渗透率,而表面沉积对相对渗透率的影响大于绝对渗透率;非均匀沥青质沉积的储层伤害方式以孔喉堵塞伤害为主,占总伤害的比例为65.2%,均匀沥青质沉积的伤害方式则以表面沉积伤害为主,占总伤害的比例为73.1%。研究成果可为全面深入认识沥青质沉积伤害及防治沥青质沉积提供依据。  相似文献   

11.
Miscible CO2 injection process has become widely used technique for the enhanced oil recovery in low permeability reservoirs. Core flooding experiments and field test of CO2 miscible flooding in low permeability sandstone reservoirs and its influence on crude oil properties was studied. The results showed that CO2 miscible flooding in low permeability sandstone reservoirs can enhance oil recovery both in laboratory study and field test. The permeability of sandstone reservoirs decreased during CO2 miscible flooding due to the precipitation of asphaltene of crude oil. The precipitation of asphaltene lead to a reduction of asphaltene content and the apparent viscosity of crude oil. A further study on inhibitors and removers for asphaltene deposits from crude oil should be investigated to prevent and remove asphaltene deposits in low permeability sandstone reservoirs.  相似文献   

12.
水驱提高采收率对注入水的离子组成有一定的要求,为了验证润湿性改变不是硫酸盐水驱提高原油采收率的唯一因素,在岩心润湿性为水湿的条件下进行水驱,研究了硫酸盐浓度、温度、注入速率和原油类型对硫酸盐水驱采收率的影响.结果表明,在水驱过程中,原油采收率随着硫酸盐浓度的增加而增加.在40℃下水驱提高采收率无明显增幅,随着温度的升高...  相似文献   

13.
In this study, laboratory tests were conducted to investigate the asphaltene deposition mechanisms during CO2 huff-n-puff injection in an Eagle Ford shale core using Wolfcamp shale oil. The permeability reduction due to asphaltene deposition by mechanical plugging and adsorption mechanisms were determined using the n-Heptane and toluene reverse flooding, respectively. The results showed that 83% of the total permeability reduction is due to asphaltene deposition by mechanical plugging mechanism, while 17% of the total permeability reduction is due to asphaltene deposition by adsorption mechanism. The critical interstitial velocity for entrainment of asphaltene deposition was around 0.0008 cm/sec.  相似文献   

14.
During CO2 flooding, the crude oil is treated with CO2, and meanwhile it is displaced by CO2. Based on the two processes, the influence of pressure and CO2 content on the asphaltene precipitation and oil recovery efficiency are systematically investigated by indoor simulation experiment. With the increase of the pressure or CO2 content during CO2 treatment, the amount of asphaltene precipitation can be increased to a certain value. Correspondingly, the degrees of the changes of oil-water interface, the compositions of crude oil, and reservoir permeability are positively correlated with the amount of asphaltene precipitation. However, during the process, the oil recovery has an optimal value due to the combined action of asphaltene precipitation and the improvement of flow performance of the crude oil. These conclusions can provide a basis for high efficiency development of low permeability oil reservoirs by CO2 flooding.  相似文献   

15.
根据吉林油田某低渗透区块的油藏条件,运用数值模拟方法研究不同驱替方式下的驱油效果。数模结果显示,交替驱替方式优于注水方式和连续气驱方式,能大幅度提高原油采收率。在交替驱过程中,气段塞和水段塞的先后顺序对采收率有显著的影响,气水交替驱优于水气交替驱,随着注气速度的增加,采收率的差值也逐渐增加。气水交替驱注入CO2能够和原油充分接触,越早注入CO2,对提高原油采收率越有利。该研究不仅为低渗透油田CO2驱油技术提供了理论基础,而且对于国家下一步进行CO2驱油和埋存潜力评价及规划具有重要的借鉴意义。  相似文献   

16.
To further improve the oil displacement effect by CO2 flooding, the trends and conditions of asphaltene deposition under different injection pressures and injection volumes of CO2 were studied by SDS solid phase deposition testing system, high temperature and high pressure microscope, and P-X phase diagram. When the mole fraction of CO2 in crude oil increases to a certain value, asphaltene deposition appears. The lower the pressure, the lower the mole fraction of CO2 in crude oil causing the asphaltene deposition there is. After the onset of asphaltene deposition, the degree of deposition increases with an increase in pressure. The amount of the deposited asphaltene under miscible displacement is the highest, under near-miscible displacement is the second highest, and under immiscible displacement is the lowest. When the dissolution of CO2 in crude oil reaches the saturation point, the asphaltene deposition becomes slow. Besides, it is feasible to prevent or reduce the asphaltene deposition by adjusting the thermodynamic parameters according to the phase behaviors of the CO2-crude oil system. The experimental results can provide theoretical basis for optimization design of the parameters of CO2 flooding.  相似文献   

17.
CO2在原油中扩散和溶解,使得原油体积膨胀和黏度降低的同时,原油组分也发生变化,可能引起沥青质等重有机质沉积,伤害储层,因此需全面评价CO2在原油中的扩散和影响因素以及可能引起的沥青质沉积程度。用压力降落法测定了压力和沥青质含量对CO2在原油中的扩散系数和溶解度的影响。结果表明,随着压力增加,CO2在原油中的扩散系数成线性增加,溶解度先增加后降低。随原油沥青质含量的增加,CO2扩散系数降低,溶解度增加。CO2扩散后的原油沥青质含量大幅降低,最高降幅达94.6%,表明CO2在扩散过程中引起了沥青质的沉积。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号