首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A study on the phenomenon of tempered martensite embrittlement (TME) has been made in experimental Fe-Mo-C and Fe-W-C steel. Charpy impact testing was conducted to evaluate the impact toughness, sensitive to TME. Retained austenite was observed by an analytical transmission electron microscopy in both steels. Both steels represented TME. TME was correlated with the formation of the interlath cementite, resulting from the decomposition of interlath retained austenite. TME occurred in a limited range of test temperatures where the interlath cementite could act as a source of embrittling cracks. Therefore, both the interlath cementite resulting from the decomposition of the interlath retained austenite, and the level of matrix toughness, enabling the interlath cementite to act as an effective embrittler, are necessary to produce TME.  相似文献   

2.
This paper reports a study of tempered martensite embrittlement in a low alloy steel. Even though this material would ordinarily be considered high purity (0.004 wt pct S and 0.004 wt pct P) the 40 wppm S are sufficient to cause the embrittlement. The results show that this embrittlement will only occur if sulfur is present on the grain boundaries in its elemental form. It it is precipitated along the grain boundaries as chromium sulfides, no embrittlement trough is observed. However, the fracture energy of all samples is reduced. This is because microvoid coalescence occurs at these grain boundary precipitates in the same manner as is observed in overheated steels.  相似文献   

3.
Tempered martensite embrittlement in phosphorus doped steels   总被引:1,自引:0,他引:1  
In this paper the effect of phosphorus on tempered martensite embrittlement of Ni−Cr steels is reported. It is shown that the measured degree of embrittlement depends on the phosphorus concentration, test temperature, grain size, and austenitizing temperature. Although reducing the prior austenite grain size tends to reduce the observed embrittlement, this can be offset by the fact that the low austenitizing temperatures used to produce the fine grain size cause an increased amount of impurity segregation. It is further shown that bulk phosphorus concentrations below 100 wppm may be required to avoid embrittlement of this type in ultra-high strength steels.  相似文献   

4.
5.
This paper reports a study of tempered martensite embrittlement in a Ni-Cr steel doped with 0.01 wt pct S. The segregation of sulfur to the grain boundaries and the associated embrittlement of this material are very dependent upon the austenitizing temperature. If the austenitizing temperature is below 1050 °C very little embrittlement and very little intergranular fracture are observed because sulfur remains precipitated as chromium sulfide. At higher austenitizing temperatures the sulfides dissolve and sulfur segregates to the grain boundaries. Because of the high bulk content, the sulfur concentration at the grain boundaries becomes great enough for the sulfides to reprecipitate there. This leads to low energy intergranular ductile fracture. However, some sulfur remains unprecipitated at the boundary and can lower the cohesive strength across the boundary. When plate-like cementite precipitates at the grain boundary during tempering heat treatments at 300 to 400 °C, the combination of the carbides and the unprecipitated sulfur causes intergranular fracture and tempered martensite embrittlement.  相似文献   

6.
A study of the micro-mechanisms of tempered martensite embrittlement was made on a series of 4340-type steels in which the contents of manganese, silicon, and trace impurities, especially phosphorus and sulfur, were varied. One plain-carbon steel was also examined. The study employed Charpy impact tests and four-point slow-bend tests coupled with an elastic-plastic stress analysis, as well as scanning electron fractography, Auger electron spectroscopy, transmission electron microscopy of extraction replicas, and magnetic measurements of the transformation of retained austenite. The results indicate that in these steels the TME phenomenon is an intergranular embrittlement problem caused by carbide precipitation on prior austenite grain boundaries which are already weakened by segregated phosphorus and sulfur. The transformation of intragranular retained austenite is concluded not to be of primary significance in the TME in these steels, although it may contribute to the magnitude of the TME toughness trough.  相似文献   

7.
This study is concerned with a correlation between the microstructure and fracture behavior of two AISI 4340 steels which were vacuum induction melted and then deoxidized with aluminum and titanium additions. This allowed a comparison between microstructures that underwent large increases in grain size and those that did not. When the steels were tempered at 350°C,K Ic and Charpy impact energy plots showed troughs which indicated tempered martensite embrittlement (TME). The TME results of plane strain fracture toughness are interpreted using a simple ductile fracture initiation model based on large strain deformation fields ahead of cracks, suggesting thatK Icscales roughly with the square root of the spacing of cementite particles precipitated during the tempering treatment. The trough in Charpy impact energy is found to coincide well with the amount of intergranular fracture and the effect of segregation of phosphorus on the austenite grain boundaries. In addition, cementite particles are of primary importance in initiating the intergranular cracks and, consequently, reducing the Charpy energy. These findings suggest that TME in the two 4340 steels studied can be explained quantitatively using different fracture models.  相似文献   

8.
ESR 4340 steel forgings tempered to a hardness of HRC 55 exhibit a severe loss of tensile ductility in the short transverse direction which is strain-rate and humidity dependent. The anisotropy is also reflected in blunt-notch Charpy impact energy, but is absent in the sharp-crack fracture toughness. Brittle behavior is associated with regions of smooth intergranular fracture which are aligned with microstructural banding. Scanning Auger microprobe analysis indicates some intergranular segregation of phosphorus and sulfur in these regions. The anisotropic embrittlement is attributed to an interaction of nonequilibrium segregation on solidification with local equilibrium segregation at grain boundaries during austenitizing. This produces defective regions of enhanced intergranular impurity segregation which are oriented during forging. The regions are prone to brittle fracture under impact conditions and abnormal sensitivity to environmental attack during low strain-rate deformation. A relatively sparse distribution of these defects (∼10cm−3) accounts for the discrepancy between smooth bar and blunt-notch testsvs sharp-crack tests. Isotropie properties are restored by homogenization treatment. For application of these steels at extreme hardness levels, homogenization treatment is essential.  相似文献   

9.
10.
Based on the data of the literature for intercrystalline stress corrosion cracking (SCC) and hydrogen embrittlement of the high-strength steel AISI 4340, determination of the so far unknown effects of tempering treatment around the low temper-martensite embrittlement range (between 175 and 285°C) on the fracture appearance. Variation of the stress intensity and applied potentials in 0.5 N NaCI solution. Discussion on obtained fractographs for a better understanding of the SCC mechanism.  相似文献   

11.
Based on the data of the literature for intercrystalline stress corrosion cracking (SCC) and hydrogen embrittlement of the High Strength AISI 4340 steel, determination of the so far unknown effects of tempering treatment around the low temper martensite embrittlement range (between 175 and 285°C) on the crack growth rates in 0.5 N NaCl solution. Effect of variation of stress intensity and applied potentials on crack growth rates. Effect of initial applied stress intensity and crack tip sharpness on crack growth characteristics. Discussion on crack growth rates for a better understanding of the SCC mechanism.  相似文献   

12.
V-notched and fatigue precracked Charpy specimens of various sizes, tested in impact and slow bend, were used to study tempered martensite embrittlement in a 4340 steel. When plotted as a function of tempering temperature, the results showed that the magnitude of the toughness decrease caused by embrittlement varied with the type and size of the specimens. Embrittlement was always detected using thin samples but its detection in thick specimens depended on whether or not they contained a precrack. In particular, no embrittlement-associated fall in toughness was observed using standard size precracked samples tested in slow bend. Separation of the shear and flat fracture components of the absorbed energies showed that the variation of shear energy is a major factor contributing to embrittlement. The results are interpreted as indicating that intergranular fracture occurs more as the result of inhibition of plastic flow within the grains rather than directly as the result of the appearance of a low resistance crack path at the grain boundaries.  相似文献   

13.
Tempered martensite embrittlement (TME) was studied in vacuum-melted 4130 steel with either 0.002 or 0.02 wt pct P. TME was observed as a severe decrease in Charpy V-notch impact energy, from 46 ft-lb. at 200 °C to 35 ft-lb. at 300 °C in the low P alloy. The impact energy of the high P alloy was consistently lower than that of the low P alloy in all tempered conditions. Fracture was transgranular for all specimens; therefore, segregation of P to the prior austenitic grain boundaries was not a factor in the o°Currence of TME. Analysis of load-time curves obtained by instrumented Charpy testing revealed that the embrittlement is associated with a drop in the pre-maximum-load and post-unstable-fracture energies. In specimens tempered at 400 °C the deleterious effect of phosphorus on impact energy became pronounced, a result more consistent with classical temper embrittlement rather than TME. A constant decrease in pre-maximum-load energy due to phosphorus content was observed. The pre-maximum-load energy decreases with increasing tempering temperature in the range of 200 °C to 400 °C, a result explained by the change in work hardening rate. Carbon extraction replicas of polished and etched as-quenched specimens revealed the presence of Fe2MoC and/or Fe3C carbides retained after austenitizing. Ductile crack extension close to the notch root was related to the formation of fine micro voids at the retained carbides. This paper is based on a presentation made at the “pcter G. Winchell Symposium on Tempering of Steel” held at the Louisville Meeting of The Metallurgical Society of AIME, October 12-13, 1981, under the sponsorship of the TMS-AIME Ferrous Metallurgy and Heat Treatment Committees.  相似文献   

14.
15.
Retained austenite and tempered martensite embrittlement   总被引:4,自引:0,他引:4  
The problems of detecting the distribution of small amounts (5 pct or less) of retained austenite films around the martensite in quenched and tempered experimental medium carbon Fe/c/x steels are discussed and electron optical methods of analysis are emphasized. These retained austenite films if stable seem to be beneficial to fracture toughness. It has been found that thermal instability of retained austenite on tempering produces an embrittlement due to its decomposition to interlath films of M3C carbides. The fractures are thus intergranular with respect to martensite but transgranular with respect to the prior austenite. The temperature at which this occurs depends upon alloy content. The effect is not found in Fe/Mo/C for which no retained austenite is detected after quenching, but is present in all other alloys investigated.  相似文献   

16.
Mechanisms of tempered martensite embrittlement in low alloy steels   总被引:1,自引:0,他引:1  
An investigation into the mechanisms of tempered martensite embrittlement (TME), also know as “500°F” or “350°C” or one-step temper embrittlement, has been made in commercial, ultra-high strength 4340 and Si-modified 4340 (300-M) alloy steels, with particular focus given to the role of interlath films of retained austenite. Studies were performed on the variation of i) strength and toughness, and ii) the morphology, volume fraction and thermal and mechanical stability of retained austenite, as a function of tempering temperature, following oil-quenching, isothermal holding, and continuous air cooling from the austenitizing temperature. TME was observed as a decrease in bothK Ic and Charpy V-notch impact energy after tempering around 300°C in 4340 and 425°C in 300-M, where the mechanisms of fracture were either interlath cleavage or largely transgranular cleavage. The embrittlement was found to be concurrent with the interlath precipitation of cementite during temperingand the consequent mechanical instability of interlath films of retained austenite during subsequent loading. The role of silicon in 300-M was seen to retard these processes and hence retard TME to higher tempering temperatures than for 4340. The magnitude of the embrittlement was found to be significantly greater in microstructures containing increasing volume fractions of retained austenite. Specifically, in 300-M the decrease inK Ic, due to TME, was a 5 MPa√m in oil quenched structures with less than 4 pct austenite, compared to a massive decrease of 70 MPa√m in slowly (air) cooled structures containing 25 pct austenite. A complete mechanism of tempered martensite embrittlement is proposed involving i) precipitation of interlath cementite due to partial thermal decomposition of interlath films of retained austenite, and ii) subsequent deformation-induced transformation on loading of remaining interlath austenite, destabilized by carbon depletion from carbide precipitation. The deterioration in toughness, associated with TME, is therefore ascribed to the embrittling effect of i) interlath cementite precipitates and ii) an interlath layer of mechanically-transformed austenite,i.e., untempered martensite. The presence of residual impurity elements in prior austenite grain boundaries, having segregated there during austenitization, may accentuate this process by providing an alternative weak path for fracture. The relative importance of these effects is discussed. Formerly with the Lawrence Berkeley Laboratory, University of California.  相似文献   

17.
18.
19.
Electron microscopy, diffraction and microanalysis, X-ray diffraction, and auger spectroscopy have been used to study quenched and quenched and tempered 0.3 pct carbon low alloy steels. Somein situ fracture studies were also carried out in a high voltage electron microscope. Tempered martensite embrittlement (TME) is shown to arise primarily as a microstructural constraint associated with decomposition of interlath retained austenite into M3C filMs upon tempering in the range of 250 °C to 400 °C. In addition, intralath Widmanstätten Fe3C forms from epsilon carbide. The fracture is transgranular with respect to prior austenite. The sit11Ation is analogous to that in upper bainite. This TME failure is different from temper embrittlement (TE) which o°Curs at higher tempering temperatures (approximately 500 °C), and is not a microstructural effect but rather due to impurity segregation (principally sulfur in the present work) to prior austenite grain boundaries leading to intergranular fracture along those boundaries. Both failures can o°Cur in the same steels, depending on the tempering conditions.  相似文献   

20.
Electron microscopy of surface replicas has been employed to determine the metallurgical micromechanics of fatigue crack initiation at surface and shallow subsurface inclusions in 4340 steel. The experimental results are considered in terms of current theoretical analyses of elastic stress distributions around hard inclusions imbedded in soft matrices. A model for crack nucleation at surface inclusions is suggested, based upon debonding of the inclusion/matrix interface at the tensile pole of the inclusion, followed by growth of the debond seam toward the inclusion “equator”. Subsequent generation of a matrix crack is associated with the initiation of “point” surface defects some distance from the inclusion/matrix boundary, but in the plane of the inclusion “equator”. Surface slip plays no discernible role in nucleation of surface inclusions, but slip bands are formed at crack sites above sub-surface inclusions. However, the microcracks continue to form through the link-up of point surface defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号