首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a 1.2-V RF front-end realized for the personal communications services (PCS) direct conversion receiver is presented. The RF front-end comprises a low-noise amplifier (LNA), quadrature mixers, and active RC low-pass filters with gain control. Quadrature local oscillator (LO) signals are generated on chip by a double-frequency voltage-controlled oscillator (VCO) and frequency divider. A current-mode interface between the downconversion mixer output and analog baseband input together with a dynamic matching technique simultaneously improves the mixer linearity, allows the reduction of flicker noise due to the mixer switches, and minimizes the noise contribution of the analog baseband. The dynamic matching technique is employed to suppress the flicker noise of the common-mode feedback (CMFB) circuit utilized at the mixer output, which otherwise would dominate the low-frequency noise of the mixer. Various low-voltage circuit techniques are employed to enhance both the mixer second- and third-order linearity, and to lower the flicker noise. The RF front-end is fabricated in a 0.13-/spl mu/m CMOS process utilizing only standard process options. The RF front-end achieves a voltage gain of 50 dB, noise figure of 3.9 dB when integrated from 100 Hz to 135 kHz, IIP3 of -9 dBm, and at least IIP2 of +30dBm without calibration. The 4-GHz VCO meets the PCS 1900 phase noise specifications and has a phase noise of -132dBc/Hz at 3-MHz offset.  相似文献   

2.
This paper describes a fully integrated zero-IF receiver for cellular CDMA and GPS applications. The single-chip zero-IF receiver integrates the entire signal path for CDMA and GPS bands, including a low-noise amplifier (LNA), I/Q down-converters, baseband channel selection filters (CSFs), a voltage-controlled oscillator (VCO), and a local oscillator (LO) distribution circuit for each band. The cellular-band LNA achieves a noise figure (NF) of 1.2 dB, input third-order intercept point (IIP3) of 11 dBm, and gain of 15.5 dB. Cellular I/Q down-converter and baseband circuitries show 9-dB composite NF, 9 dBm IIP3 and 60-dBm input second-order intercept point (IIP2) without IIP2 calibration. The measured LO leakage is less than -110 dBm at LNA input. The phase noise of the cellular VCO is -134 dBc/Hz at 900-kHz offset with 1.76-GHz carrier frequency. Total GPS signal path achieves NF of 1.7 dB and gain of 74 dB with 42-mA current. The receiver is fabricated in a 0.35-mum SiGe BiCMOS process and packaged in a 6 mm times 6 mm 40-pin micro-lead-frame. Handset measurements report that the receiver meets or exceeds all of the CDMA-2000 requirements  相似文献   

3.
A 5.2-GHz CMOS receiver employs a double downconversion heterodyne architecture with a local oscillator frequency of 2.6 GHz and applies offset cancellation to the baseband amplifiers. Placing the image around the zero frequency, the receiver achieves an image rejection of 62 dB with no external components while minimizing the flicker noise upconversion in the first mixing operation. Realized in a 0.25-μm digital CMOS technology, the circuit exhibits a noise figure of 6.4 dB, an IP3 of -15 dBm, and a voltage conversion gain of 43 dB, while draining 29 mW from a 2.5-V supply  相似文献   

4.
AM, FM, and baseband noise of a BARITT diode oscillator in the range 100 Hz-50 kHz off the carrier has been measured under various operating conditions. A simple calculation has been made, relating the baseband noise to the oscillator AM and FM noise via measured amplitude and frequency modulation sensitivities and the results have been compared with the noise measured. It is shown that, depending on the bias current applied, both AM and FM noise performance can be degraded by up-conversion. Complete removal of up-converted noise requires a high-impedance low-noise bias supply since both the diode noise and bias supply noise at baseband frequencies may be significant when up-converted. Even with all modulation suppressed, the AM and FM noise has a flicker component almost completely correlated with the diode flicker noise at baseband frequencies. The RF power dependence of the AM and FM noise has also been investigated. It is shown that the BARITT oscillator noise compares very favorably with that of IMPATT's and TEO's. Values of -142 dB/100 Hz (AM noise) and 3.5 Hz/(100 Hz)/sup 1/2/ for Q/sub ext/ = 200 (FM noise) have been measured at 30 kHz off the carrier.  相似文献   

5.
A 2-GHz direct-conversion receiver for wide-band code division multiple access (WCDMA) is presented. It includes two low-noise amplifiers (LNAs), an I/Q demodulator, and two sixth-order baseband channel select filters with programmable gain. Quadrature local oscillator (LO) signals are generated on chip in a frequency divider flip-flop. An external interstage filter between the LNAs rejects transmitter leakage to relax demodulator linearity requirements. A low-voltage demodulator topology improves linearity as well as demodulator output pole accuracy. The active-RC baseband filter uses a programmable servo loop for offset compensation and provides an adjacent channel rejection of 39 dB. Programmable gain over 71-dB range in 1-dB steps is merged with the filter to maximize dynamic range. An automatic on-chip frequency calibration scheme provides better than 1.5% corner frequency accuracy. The receiver is integrated in a 0.13-/spl mu/m CMOS process with metal-insulator-metal (MIM) capacitors. Measured receiver performance includes a 6.5-dB noise figure, IIP2 of +27 dBm, and IIP3 of -8.6 dBm. Power consumption is 45 mW.  相似文献   

6.
The sensitivity of RF CMOS receivers using a direct conversion or a low-IF architecture is strongly affected by flicker noise. This paper gives theoretical guidelines to predict the flicker noise in Gilbert-cell mixers. The conversion gain, the equivalent input and output noise, and the effect of the pole at the single internal RF node are discussed. For the first time, results which are valid in all modes of operation are given. Such complete results are required for some ultra low-power and low-voltage applications, since the transistors might be operated in moderate or even weak inversion region. The theoretical gains are found to remain within a 2-dB margin with respect to the measurements of a UHF downconverter built in a 0.5 μm process, for a large range of bias conditions and local oscillator swing  相似文献   

7.
The developments of the high speed analog to digital converters (ADC) and advanced digital signal processors (DSP) make the smart antenna with digital beamforming (DBF) a reality. In conventional M-elements array antenna system, each element has its own receiving channel and ADCs. In this paper, a novel smart antenna receiver with digital beamforming is proposed. The essential idea is to realize the digital beamforming receiver based on bandpass sampling of multiple distinct intermediate frequency (IF) signals. The proposed system reduces receiver hardware from M IF channels and 2M ADCs to one IF channel and one ADC using a heterodyne radio frequency (RF) circuitry and a multiple bandpass sampling digital receiver. In this scheme, the sampling rate of the ADC is much higher than the summation of the M times of the signal bandwidth. The local oscillator produces different local frequency for each RF channel The receiver architecture is presented in detail, and the simulation of bandpass sampling of multiple signals and digital down conversion to baseband is given. The principle analysis and simulation results indicate the effectiveness of the new proposed receiver.  相似文献   

8.
朱晓维  周建义 《微波学报》1999,15(2):127-132
本文介绍一种数字可编程射频锁相源的设计,及其在IS-95标准的码分多址(CDMA)移动通信系统中的应用,它由电荷泵型的数字频率合成器,无源三阶环路滤波器,以及压控振荡器构成。作为CDMA移动通信系统本振源,为其提供射频上/下变频器和中频调制/解调器的本振信号、以及基带部分的参考基准信号,具有低相噪、低工作电压、低功耗的特点。文中还给出了使用LMX2332A/LM2337双环数字频率合成器研制的锁相振荡源的实例及其测试结果,其相位噪声在偏离载频10kHz处,均优于-92dBc。  相似文献   

9.
A single chip quad-band multi-mode (GSM900/ DCS1800/PCS1900/CDMA2K) direct-conversion RF receiver with integrated baseband ADCs is presented. The fully integrated RF receiver is implemented in a 90-nm single poly, six level metal, standard digital CMOS process with no additional analog and RF components. The highly digital multi-mode receiver uses minimum analog filtering and AGC stages, digitizing useful signal, dynamic DC offsets and blockers at the mixer output. The direct-conversion GSM front-end utilizes resistive loaded LNAs with only two coupled inductors per LNA. The GSM front-end achieves a 31.5 dB gain and a 2.1 dB integrated noise figure with a 5 dB noise figure under blocking conditions. The CDMA2K front-end utilizes a self-biased common-gate input amplifier followed by passive mixers, achieving wideband input matching from 900 MHz up to 2.1 GHz with an IIP3 of +8 dBm. The GSM receiver consumes 38 mA from a power supply of 1.5 V and CDMA2K receiver consumes 16 mA in the low band and 21 mA in the high band. The multi-mode receiver, including LO buffers and frequency dividers, ADCs, and reference buffers, occupies 2.5 mm/sup 2/.  相似文献   

10.
Recent trends in the integration of entire systems on-chip have spurred the development of homodyne radios as alternatives to the more mature yet harder to integrate superheterodyne architectures. This paper presents a monolithic device that integrates all of the functions necessary to implement a multiband homodyne global system for mobile telecommunications (GSM) radio except for the power amplifier (PA) and radio frequency (RF) passives. The single BiCMOS chip includes a quad-band direct conversion receiver that down converts RF to quadrature analog baseband. The front-end circuitry is followed by a low-DC-offset, high-dynamic-range, analog I/Q baseband chain. The transmit section is comprised of a quad-band up-conversion transmit phase-locked loop (PLL) including on chip transmit voltage-controlled oscillators (VCOs). The stringent GSM receive band phase noise specifications are met without the use of surface acoustic wave filters. A single /spl Sigma//spl Delta/ fractional-N synthesizer locking a fully integrated ultrahigh frequency VCO generates the system local oscillator signal.  相似文献   

11.
A new “half-RF” architecture incorporates a polyphase filter in the signal path to allow the use of a local oscillator frequency equal to half the input frequency. The receiver performs 90 $^{circ}$ phase shift and two downconversion steps to produce quadrature baseband outputs. The transmitter upconverts the quadrature baseband signals in two steps, applies the results to a polyphase filter, and sums its outputs. Each path employs a dedicated 30-GHz oscillator and is fabricated in 90-nm CMOS technology. The receiver achieves a noise figure of 5.7–7.1 dB and gain/phase mismatch of 1.1 dB/2.1$^{circ}$ while consuming 36 mW. The transmitter produces a maximum output level of $-$7.2 dBm and an image rejection of 20 dB while drawing 78 mW.   相似文献   

12.
A 1.2 GHz frequency synthesizer integrated in a RF receiver for Beidou navigation is implemented in standard 0.18μm CMOS technology.A distributed biased varactor LC voltage-controlled oscillator is employed to achieve low tuning sensitivity and optimized phase noise performance.A high-speed and low-switching-noise divider-by-2 circuit based on a source-coupled logic structure is adopted to generate a quadrature(I/Q) local oscillating signal.A high-speed 8/9 dual-modulus prescaler(DMP),a programmable-delay phase frequency detector without dead-zone problem,and a programmable-current charge pump are also integrated into the frequency synthesizer. The frequency synthesizer demonstrates an output frequency from 1.05 to 1.30 GHz,and the phase noise is-98.53 dBc/Hz at 100-kHz offset and -121.92 dBc/Hz at 1-MHz offset from the carrier frequency of 1.21 GHz. The power dissipation of the core circuits without the output buffer is 9.8 mW from a 1.8 V power supply.The total area of the receiver is 2.4×1.6 mm~2.  相似文献   

13.
The AM and FM fluctuations in an oscillator output are originated from impedance fluctuation in low frequencies (baseband noise) and voltage or current fluctuation in the vicinity of the carrier frequency (RF noise). In this paper, from newly defined "complex correlation coefficient between AM and FM noises," contributions of baseband and RF noises to the AM and FM noises are determined. Examples of data for X-band Gunn oscillators show that both the AM and FM noises are mainly caused by the baseband noise in the vicinity of the carrier frequency (within 1-kHz band), whereas they are mainly due to the RF noise at frequencies further than 10 kHz from the carrier frequency.  相似文献   

14.
Tzeng  L.D. Frahm  R.E. 《Electronics letters》1988,24(18):1132-1134
A wide bandwidth low noise pinFET receiver has been fabricated and characterised for optical preamplifier applications. The receiver uses a low capacitance planar pin diode as the photodetector. A bandwidth of 7.08 GHz was measured. The measured input noise current for the receiver front-end is lower than 12 pA/√(f). Using a 1.3 μm DFB laser as the transmitter, at a data rate of 4 Gbit/s, the measured receiver sensitivity is -25.5 dBm with a bit-error-rate of 1×10 -9. A set of two of such receivers has also been tested in a 1.3 μm polarisation-insensitive optical preamplifier system experiment. The measured receiver sensitivity, including an optical insertion loss of 1.5 dB, is -29.3 dBm  相似文献   

15.
Noise in RF-CMOS mixers: a simple physical model   总被引:10,自引:0,他引:10  
Flicker noise in the mixer of a zero- or low-intermediate frequency (IF) wireless receiver can compromise overall receiver sensitivity. A qualitative physical model has been developed to explain the mechanisms responsible for flicker noise in mixers. The model simply explains how frequency translations take place within a mixer. Although developed to explain flicker noise, the model predicts white noise as well. Simple equations are derived to estimate the flicker and white noise at the output of a switching active mixer. Measurements and simulations validate the accuracy of the predictions, and the dependence of mixer noise on local oscillator (LO) amplitude and other circuit parameters  相似文献   

16.
IIP2 Calibration by Injecting DC Offset at the Mixer in a Wireless Receiver   总被引:3,自引:0,他引:3  
A major contributor to degraded input-referred second-order intercept point (IIP2) in integrated RF systems-on-chips is local oscillator (LO) leakage to the input of RF circuits. In this brief, we present a digital calibration technique for improving IIP2 by injecting controlled dc offset at the mixer output through a three-port network of switched-capacitor filters. The dc offset at mixer output gets up-converted to LO frequency at the input of RF circuits due to poor reverse isolation of the receiver front-end. By controlling the amplitude of the injected dc, IIP2 degradation due to LO leakage at the input of RF amplifiers can be compensated. Mathematical analysis is presented and supported by measurement data from a quad-band GSM/GPRS receiver implemented in 90-nm digital CMOS process. Calibrated IIP2 of 50 dBm is reported for the receiver at low-noise amplifier input.  相似文献   

17.
Single-chip RF SoCs are seeing widespread acceptance in wireless applications. In this paper we address the issue of design verification of single-chip RF SOCs in a framework that accepts RF input and analyzes receiver BER performance and transmitter output distortion and phase noise by processing several thousand packets of baseband information while compensation algorithms are simultaneously executed. No comprehensive methodology exists to date for designing such complex systems. This paper present a novel approach that allows building complex RF SoC systems based on VHDL modeling and simulation and opens up major avenues of model development for RF and analog circuits. This approach has been successfully applied to verify two generations of digital RF processors (DRP) in deep-submicron technologies  相似文献   

18.
This paper describes a fully integrated digital-spread spectrum transceiver chip fabricated through MOSIS in 1.2 μm CMOS. It includes a baseband spread spectrum transmitter and a coherent intermediate frequency (IF) receiver consisting of a Costas loop, an acquisition loop for the pseudo-noise (PN) sequence, and a clock recovery loop with a 406.4 MHz onchip numerically controlled oscillator (NCO). The transceiver is capable of operating at a maximum IF sampling rate of 50.8 MS/s and a maximum chip rate of 12.7 R Mchips/s (Mcps) with selectable data rates of 100, 200, 400, and 800 kbps. At the maximum operating speed of 50.8 R MS/s, it dissipates 1.1 W. In an additive white Gaussian noise channel the IF receiver achieves a receiver output SNR within 1 dB of theory and can acquire code with a wide range of input SNR from -17 dB to over 30 dB. The transceiver chip has been interfaced to an RF up/down converter to demonstrate a wireless voice/data/video link operating in the 902-928 MHz band  相似文献   

19.
对GPS射频前端进行了研究与设计,实现了GPS信号射频到数字中频的转化过程。应用GP2010芯片设计出了符合要求的GPS射频前端,包括前端滤波器、低噪声放大器,以及中频滤波器。介绍测试系统的搭建,对实际制作的电路板进行调试,并得出测试结果,为后期基于FPGA实现GPS基带数字信号处理提供GPS数字中频信号,为自主设计GPS接收机奠定了基础。  相似文献   

20.
李振荣  庄奕琪  李兵  靳刚 《半导体学报》2011,32(7):075008-7
实现了一种基于标准0.18µm CMOS工艺的应用于北斗导航射频接收机的1.2GHz频率综合器。在频率综合器中采用了一种基于分布式偏置技术实现的低噪声高线性LC压控振荡器和一种基于源极耦合逻辑的高速低开关噪声正交输出二分频器,集成了基于与非触发器结构的高速8/9双模预分频器、无死区效应的延迟可编程的鉴频鉴相器和电流可编程的电荷泵。该频率综合器的输出频率范围从1.05到1.30GHz。当输出频率为1.21GHz 时,在100-kHz和1-MHz的频偏处相位噪声分别为-98.53dBc/Hz和-121.92dBc/Hz。工作电压为1.8V时,不包括输出Buffer的核心电路功耗为9.8mW。北斗射频接收机整体芯片面积为2.41.6 mm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号