首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘鹏  余天堂 《振动与冲击》2013,32(13):76-80
采用扩展有限元求解二维弹性压电材料动断裂问题。扩展有限元的网格独立于裂纹,因此网格生成可大大地简化,且裂纹扩展时不需重构网格。采用相互作用积分技术计算动强度因子。比较了标准的力裂尖加强函数和力-电裂尖加强函数对动强度因子的影响,结果表明标准的力裂尖加强函数能有效地分析压电材料动断裂问题。分析了极化方向对动强度因子的影响。数值分析表明采用扩展有限元获得的动强度因子与其他数值方法解吻合得很好。  相似文献   

2.
Deformations such as crack opening and sliding displacements in a cracked viscoelastic body are numerically investigated by the extended finite element method (XFEM). The solution is carried out directly in time domain with a mesh not conforming to the crack geometry. The generalized Heaviside function is used to reflect the displacement discontinuity across a crack surface while the basis functions extracted from the viscoelastic asymptotic fields are used to manifest the gradient singularity at a crack tip. With these treatments, the XFEM formulations are derived in an incremental form. In evaluating the stiffness matrix, a selective integration scheme is suggested for problems with high Poisson ratios often encountered in viscoelastic materials over different element types in the XFEM. Numerical examples show that the crack opening displacement and crack sliding displacement are satisfactory.  相似文献   

3.
The aim of the paper is to study the capabilities of the extended finite element method (XFEM) to achieve accurate computations in non‐smooth situations such as crack problems. Although the XFEM method ensures a weaker error than classical finite element methods, the rate of convergence is not improved when the mesh parameter h is going to zero because of the presence of a singularity. The difficulty can be overcome by modifying the enrichment of the finite element basis with the asymptotic crack tip displacement solutions as well as with the Heaviside function. Numerical simulations show that the modified XFEM method achieves an optimal rate of convergence (i.e. like in a standard finite element method for a smooth problem). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
为精确而有效地求解机电耦合作用下含裂纹压电材料的断裂参数,首先,通过将复势函数法、扩展有限元法和光滑梯度技术引入到含裂纹压电材料的断裂机理问题中,提出了含裂纹压电材料的Cell-Based光滑扩展有限元法;然后,对含中心裂纹的压电材料强度因子进行了模拟,并将模拟结果与扩展有限元法和有限元法的计算结果进行了对比。数值算例结果表明:Cell-Based光滑扩展有限元法兼具扩展有限元法和光滑有限元法的特点,不仅单元网格与裂纹面相互独立,且裂尖处单元不需精密划分,与此同时,Cell-Based光滑扩展有限元法还具有形函数简单且不需求导、对网格质量要求低且求解精度高等优点。所得结论表明Cell-Based光滑扩展有限元法是压电材料断裂分析的有效数值方法。   相似文献   

5.
In this paper, the linear free flexural vibration of cracked functionally graded material plates is studied using the extended finite element method. A 4-noded quadrilateral plate bending element based on field and edge consistency requirement with 20 degrees of freedom per element is used for this study. The natural frequencies and mode shapes of simply supported and clamped square and rectangular plates are computed as a function of gradient index, crack length, crack orientation and crack location. The effect of thickness and influence of multiple cracks is also studied.  相似文献   

6.
This paper presents a convenient and efficient method to obtain accurate stress intensity factors for cracked anisotropic plates. In this method, a complex variable formulation in conjunction with a hybrid displacement finite element scheme is used to carry out the stiffness and stress calculations of finite cracked plates subjected to general boundary and loading conditions. Unlike other numerical methods used for local analysis such as the boundary element method, the present method results in a symmetric stiffness matrix, which can be directly incorporated into the stiffness matrix representing other structural parts modeled by conventional finite elements. Therefore, the present method is ideally suited for modeling cracked plates in a large complex structure.  相似文献   

7.
The present work aims to look into the contribution of the extended finite element method for large deformation of cracked bodies in plane strain approximation. The unavailability of sufficient mathematical tools and proofs for such problem makes the study exploratory. First, the asymptotic solution is presented. Then, a numerical analysis is realized to verify the pertinence of solution given by the asymptotic procedure, because it serves as an eXtended finite element method enrichment basis. Finally, a convergence study is carried out to show the contribution of the exploitation of such method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The finite element method for the dynamic problem of cracked linear viscoelastic solids is developed using the singular element where the displacement function is taken from the analytical solution near the crack-tip. The time variation of the dynamic stress intensity factors is determined for a center crack and an oblique crack in standard linear viscoelastic rectangular plates subjected to dynamic loading.
Résumé La méthode par éléments finis permettant d'aborder le problème dynamique des solides linéaires viscoélastiques fissurés est développée en recourant à un élément singulier pour lequel la fonction de déplacement est prise dans une solution analytique au voisinage del'extrémité de la fissure. La variation dans le temps des facteurs d'intensité de contrainte dynamique est déterminée pour une fissure centrale et pour une fissure oblique dans des plaques rectangulaires standard en matériau linéaire viscoélastique soumises à une sollicitation dynamique.
  相似文献   

9.
In this paper, a coupled hydro-mechanical formulation is developed for deformable porous media subjected to crack interfaces in the framework of extended finite element method. Governing equations of the porous medium consist of the momentum balance of the bulk together with the momentum balance and continuity equations of the fluid phase, known as formulation. The discontinuity in fractured porous medium is modeled for both opening and closing modes that results in the fluid flow within the fracture, and/or contact behavior at the crack edges. The fluid flow through the fracture is assumed to be viscous and is modeled by employing the Darcy law in which the permeability of fracture is obtained using the cubic law. The contact condition in fractured porous medium is handled by taking the advantage from two different algorithms of LATIN method and penalty algorithm. The effect of contact on fluid phase is employed by considering no leak-off from/into the porous medium. The nonlinearity of coupled equations produced due to opening and closing modes is carried out using an iterative algorithm in the Newton–Raphson procedure. Finally, several numerical examples are solved to illustrate the performance of proposed X-FEM method for hydro-mechanical behavior of fractured porous media with opening and closing modes.  相似文献   

10.
A new formulation of the boundary element method (BEM) is proposed in this paper to calculate stress intensity factors for cracked 2-D anisotropic materials. The most outstanding feature of this new approach is that the displacement and traction integral equations are collocated on the outside boundary of the problem (no-crack boundary) only and on one side of the crack surfaces only, respectively. Since the new BEM formulation uses displacements or tractions as unknowns on the outside boundary and displacement differences as unknowns on the crack surfaces, the formulation combines the best attributes of the traditional displacement BEM as well as the displacement discontinuity method (DDM). Compared with the recently proposed dual BEM, the present approach doesn't require dua elements and nodes on the crack surfaces, and further, it can be used for anisotropic media with cracks of any geometric shapes. Numerical examples of calculation of stress intensity factors were conducted, and excellent agreement with previously published results was obtained. The authors believe that the new BEM formulation presented in this paper will provide an alternative and yet efficient numerical technique for the study of cracked 2-D anisotropic media, and for the simulation of quasi-static crack propagation.  相似文献   

11.
In this paper, an application of the Extended Finite Element Method (XFEM) for simulation of delamination in fibre metal laminates is presented. The study consider a double cantilever beam made of fibre metal laminate in which crack opening in mode I and crack propagation were studied. Comparison with the solution by standard Finite Element Method (FEM) as well as with experimental tests is provided. To the authors’ knowledge, this is the first time that XFEM is used in the fracture analysis of fibre metal laminates such as GLARE. The results indicated that XFEM could be a promising technique for the failure analysis of composite structures.  相似文献   

12.
This paper develops an efficient numerical approach to predict deterministic size effects in structures made of quasi-brittle materials using the scaled boundary finite element method (SBFEM). Depending on the structure’s size, two different SBFEM-based crack propagation modelling methodologies are used for fracture analyses. When the length of the fracture process zone (FPZ) in a structure is of the order of its characteristic dimension, nonlinear fracture analyses are carried out using the finite element-SBFEM coupled method. In large-sized structures, a linear elastic fracture mechanics (LEFM)-based SBFEM is used to reduce computing time due to small crack propagation length required to represent the FPZ in an equivalent nonlinear analysis. Remeshing is used in both methods to model crack propagation with crack paths unknown a priori. The resulting peak loads are used to establish the size effect laws. Three concrete structures were modelled to validate the approach. The predicted size effect is in good agreement with experimental data. The developed approach was found more efficient than the finite element method, at least in modelling LEFM problems and is thus an attractive tool for predicting size effect.  相似文献   

13.
Static fracture analyses in two‐dimensional linear magnetoelectroelastic (MEE) solids is studied by means of the extended finite element method (X‐FEM). In the X‐FEM, crack modeling is facilitated by adding a discontinuous function and the crack‐tip asymptotic functions to the standard finite element approximation using the framework of partition of unity. In this study, media possessing fully coupled piezoelectric, piezomagnetic and magnetoelectric effects are considered. New enrichment functions for cracks in transversely isotropic MEE materials are derived, and the computation of fracture parameters using the domain form of the contour interaction integral is presented. The convergence rates in energy for topological and geometric enrichments are studied. Excellent accuracy of the proposed formulation is demonstrated on benchmark crack problems through comparisons with both analytical solutions and numerical results obtained by the dual boundary element method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A coupling extended multiscale finite element method (CEMsFEM) is developed for the dynamic analysis of heterogeneous saturated porous media. The coupling numerical base functions are constructed by a unified method with an equivalent stiffness matrix. To improve the computational accuracy, an additional coupling term that could reflect the interaction of the deformations among different directions is introduced into the numerical base functions. In addition, a kind of multi‐node coarse element is adopted to describe the complex high‐order deformation on the boundary of the coarse element for the two‐dimensional dynamic problem. The coarse element tests show that the coupling numerical base functions could not only take account of the interaction of the solid skeleton and the pore fluid but also consider the effect of the inertial force in the dynamic problems. On the other hand, based on the static balance condition of the coarse element, an improved downscaling technique is proposed to directly obtain the satisfying microscopic solutions in the CEMsFEM. Both one‐dimensional and two‐dimensional numerical examples of the heterogeneous saturated porous media are carried out, and the results verify the validity and the efficiency of the CEMsFEM by comparing with the conventional finite element method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The extended finite element method was introduced in 1999 to treat problems involving discontinuities with no or minimal remeshing through appropriate enrichment functions. This enables elements to be split by a discontinuity, strong or weak, and hence requires the integration of discontinuous functions or functions with discontinuous derivatives over elementary volumes. A variety of approaches have been proposed to facilitate these special types of numerical integration, which have been shown to have a large impact on the accuracy and the convergence of the numerical solution. The smoothed extended finite element method (XFEM), for example, makes numerical integration elegant and simple by transforming volume integrals into surface integrals. However, it was reported in the literature that the strain smoothing is inaccurate when non‐polynomial functions are in the basis. In this paper, we investigate the benefits of a recently developed Linear smoothing procedure which provides better approximation to higher‐order polynomial fields in the basis. Some benchmark problems in the context of linear elastic fracture mechanics are solved and the results are compared with existing approaches. We observe that the stress intensity factors computed through the proposed linear smoothed XFEM is more accurate than that obtained through smoothed XFEM.  相似文献   

16.
Dynamic crack propagation of composites is investigated in this paper based on the recent advances and development of orthotropic enrichment functions within the framework of partition of unity and the extended finite element method (XFEM). The method allows for analysis of the whole crack propagation pattern on an unaltered finite element mesh, defined independent of the existence of any predefined crack or its propagation path. A relatively simple, though efficient formulation is implemented, which consists of using a dynamic crack initiation toughness, a crack orientation along the maximum circumferential stress, and a simple equation to presume the crack speed. Dynamic stress intensity factors (DSIFs) are evaluated by means of the domain separation integral method. The governing elastodynamics equation is first transformed into a standard weak formulation and is then discretized into an XFEM system of time dependent equations, to be solved by the unconditionally stable Newmark time integration scheme. A number of benchmark and test problems are simulated and the results are compared with available reference results.  相似文献   

17.
The method of piezoelectric finite elements was applied to the simulation of piezoelectric Lamb-wave delay lines with and without acoustical absorbers. In this finite-element analysis, free as well as electrically driven vibrations were computed. The shapes of the symmetric Lamb modes were determined by the solution of eigenproblems, and the transient mechanical build-up process was studied for a switched electrical sine wave excitation. The transfer function, the group delay time, and the impedance matrix of devices of different designs are calculated. The good agreement between simulation and experimental results indicates the suitability of the finite-element method for optimizing acoustic delay-line devices.  相似文献   

18.
This study presents a new algorithm for structural topological optimization of two-dimensional continuum structures by combining the extended finite element method (X-FEM) with an evolutionary optimization algorithm. Taking advantage of an isoline design approach for boundary representation in a fixed grid domain, X-FEM can be implemented to improve the accuracy of finite element solutions on the boundary during the optimization process. Although this approach does not use any remeshing or moving mesh algorithms, final topologies have smooth and clearly defined boundaries which need no further interpretation. Numerical comparisons of the converged solutions with standard bi-directional evolutionary structural optimization solutions show the efficiency of the proposed method, and comparison with the converged solutions using MSC NASTRAN confirms the high accuracy of this method.  相似文献   

19.
This paper presents fracture mechanics analysis using the wavelet Galerkin method and extended finite element method. The wavelet Galerkin method is a new methodology to solve partial differential equations where scaling/wavelet functions are used as basis functions. In solid/structural analyses, the analysis domain is divided into equally spaced structured cells and scaling functions are periodically placed throughout the domain. To improve accuracy, wavelet functions are superposed on the scaling functions within a region having a high stress concentration, such as near a hole or notch. Thus, the method can be considered a refinement technique in fixed‐grid approaches. However, because the basis functions are assumed to be continuous in applications of the wavelet Galerkin method, there are difficulties in treating displacement discontinuities across the crack surface. In the present research, we introduce enrichment functions in the wavelet Galerkin formulation to take into account the discontinuous displacements and high stress concentration around the crack tip by applying the concept of the extended finite element method. This paper presents the mathematical formulation and numerical implementation of the proposed technique. As numerical examples, stress intensity factor evaluations and crack propagation analyses for two‐dimensional cracks are presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The calculation of stress intensity factors for complicated crack configurations in finite plates usually presents substantial difficulty. A version of the finite element method solves such problems approximately by means of special cracked elements. A general procedure for evaluating the stiffness matrix of a cracked element is developed, and numerical results obtained by the simplest elements are compared with those provided by other methods.
Zusammenfassung Die Berechnung von Spannungsintensitätsfaktoren für komplizierte Rißgefüge in endlichen Platten bereitet gewöhnlich erhebliche Schwierigkeiten. Fine Variante finite element method löst annähernd solche Probleme mit Hilfe von spezieller gerissenen Elementarteilen.Es wird ein allgemeines Verfahren zur Ermittlung der Steifheits-Matrix eines gerissenes Elementarteilchens aufgestellt. Die numerischen Ergebnisse welche mit den einfachsten Elementarteilen bestimmt wurden, werden mit den nach anderen Verfahren erzielten Ergebnissen verglichen.

Résumé Pour une plaque finie et une configuration de fissures compliquée, le calcul des coefficients d'intensité de contraintes s'avère normalement difficile, voire pratiquement impossible.Toutefois, une variante de la méthode des éléments finis permet de résoudre ce genre de problèmes de façon approximative moyennant l'adoption d'un élément fissure.Dans cet article l'auteur développe une méthode générale permettant d'évaluer la matrice de raideur d'un élément fissuré.Ensuite il procède pour des éléments simples à une comparaison des résultats numériques obtenus respectivement par d'autres méthodes et par la sienne.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号